
DIPLOMA IN BUSINESS ANALYTICS

DBA-105

DATABASE MANAGEMENT

SYSTEM

GUR

U
JA

M
B

E
S

H
W

A
R

UNIV
ERSITY OF SCIENC

E
&

T E
C

H
N

O
LO

GY

Directorate of Distance Education
Guru Jambheshwar University of Science &

Technology. HISAR-125001

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 2 |

CONTENTS

1. Overview of File System & Database Systems 3

2. Database Approach- Characteristics of Database Approach 20

3. Responsibility of Database Administrator & Classification

of DBMS

34

4. Database System Architecture & Data Models 51

5. Schemas and Data Independence 67

6. Entity-Relation Model and relationships 79

7. Relational Model and Query Language 95

8. Relational Database Design 118

9. Normal Forms 133

10. Concurrency Control Techniques 153

11. Locking and Recovery Techniques in Centralized DBMS 165

12. DDBMS Design 184

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 3 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 1 VETTER:

OVERVIEW OF FILE SYSTEM & DATABASE SYSTEMS

STRUCTURE

1.0 Learning Objective

1.1 Introduction

1.2 Definition

1.3 Basic concepts

1.3.1 Data and Information

1.3.2 Record and Files

1.4 Traditional File Based Systems

1.4.1 Drawbacks of File Based Systems

1.5 DBMS Functions

1.6 Check Your Progress

1.7 Summary

1.8 Keywords

1.8 Self-Assessment Test

1.9 Answers to check your progress

1.10 References / Suggested Readings

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 4 |

1.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand theconcepts of data, information

and knowledge. Detailed discussion about the traditional aspect of data and traditional file based

system. To study the file oriented system and find out the drawbacks of it.

1.1 INTRODUCTION

“Today, more than at any previous time, the success of an organization depends onits ability to acquire

accurate and timely data about its operations, to manage thisdata effectively, and to use it to analyze and

guide its activities. Phrases such as theinformation superhighway have become ubiquitous, and

information processing is arapidly growing multibillion dollar industry.The amount of information

available to us is literally exploding, and the value of dataas an organizational asset is widely recognized.

Yet without the ability to manage thisvast amount of data, and to quickly find the information that is

relevant to a givenquestion, as the amount of information increases, it tends to become a distractionand a

liability, rather than an asset. This paradox drives the need for increasinglypowerful and flexible data

management systems. To get the most out of their largeand complex datasets, users must have tools that

simplify the tasks of managing thedata and extracting useful information in a timely fashion. Otherwise,

data can becomea liability, with the cost of acquiring it and managing it far exceeding the value thatis

derived from it.“

A historical perspective

 “In the late 1960s, IBM developed the Information Management System (IMS) DBMS,used even

today in many major installations. IMS formed the basis for an alternativedata representation framework

called the hierarchical data model. The SABRE systemfor making airline reservations was jointly

developed by American Airlines and IBMaround the same time, and it allowed several people to access

the same data througha computer network. Interestingly, today the same SABRE system is used to

powerpopular Web-based travel services such as Travelocity!

 In 1970, Edgar Codd, at IBM's San Jose Research Laboratory, proposed a new datarepresentation

framework called the relational data model. This proved to be a watershedin the development of database

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 5 |

systems: it sparked rapid development of severalDBMSs based on the relational model, along with a rich

body of theoretical results that placed the field on a firm foundation. Codd won the 1981 Turing Award

for hisseminal work. Database systems matured as an academic discipline, and the popularityof relational

DBMSs changed the commercial landscape. Their benefits werewidely recognized, and the use of

DBMSs for managing corporate data became standardpractice.

 In the 1980s, the relational model consolidated its position as the dominant DBMSparadigm, and

database systems continued to gain widespread use. The SQL querylanguage for relational databases,

developed as part of IBM's System R project, is nowthe standard query language. SQL was standardized

in the late 1980s, and the currentstandard, SQL-92, was adopted by the American National Standards

Institute (ANSI)and International Standards Organization (ISO). Arguably, the most widely used formof

concurrent programming is the concurrent execution of database programs (calledtransactions). Users

write programs as if they are to be run by themselves, and theresponsibility for running them concurrently

is given to the DBMS. James Gray wonthe 1999 Turing award for his contributions to the field of

transaction management ina DBMS. In the late 1980s and the 1990s, advances have been made in many

areas of databasesystems. Considerable research has been carried out into more powerful query

languagesand richer data models, and there has been a big emphasis on supportingcomplex analysis of

data from all parts of an enterprise. Several vendors (e.g., IBM'sDB2, Oracle 8, and Informix UDS) have

extended their systems with the ability to storenew data types such as images and text, and with the ability

to ask more complexqueries. Specialized systems have been developed by numerous vendors for

creatingdata warehouses, consolidating data from several databases, and for carrying out

specializedanalysis.

 An interesting phenomenon is the emergence of several enterprise resource planning(ERP) and

management resource planning (MRP) packages, which add a substantiallayer of application-oriented

features on top of a DBMS. Widely used packages includesystems from Baan, Oracle, PeopleSoft, SAP,

and Siebel. These packages identify aset of common tasks (e.g., inventory management, human resources

planning, financialanalysis) encountered by a large number of organizations and provide a

generalapplication layer to carry out these tasks. The data is stored in a relational DBMS,and the

application layer can be customized to different companies, leading to lower overall costs for the

companies, compared to the cost of building the application layerfrom scratch.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 6 |

 Most significantly, perhaps, DBMSs have entered the Internet Age. While the firstgeneration of

Web sites stored their data exclusively in operating systems files, theuse of a DBMS to store data that is

accessed through a Web browser is becomingwidespread. Queries are generated through Web-accessible

forms and answers areformatted using a markup language such as HTML, in order to be easily displayedin

a browser. All the database vendors are adding features to their DBMS aimed atmaking it more suitable

for deployment over the Internet.

Database management continues to gain importance as more and more data is broughton-line, and made

ever more accessible through computer networking. Today the field isbeing driven by exciting visions

such as multimedia databases, interactive video, digitallibraries, and a host of scientific projects such as

the human genome mapping effort andNASA's Earth Observation System project, and the desire of

companies to consolidatetheir decision-making processes and mine their data repositories for useful

informationabout their businesses. Commercially, database management systems represent one ofthe

largest and most vigorous market segments. Thus the study of database systemscould prove to be richly

rewarding in more ways than one!”

1.2 DEFINITION

“Data is the fuel that drives the financial services industry. Without it, organizations would cease to

function. It is data that ensures that every system and every process within the organization functions at

an optimal level. Data is mission-critical because it:

• Influences every decision

• Powers risk management

• Offers insight into markets, products, services, customers and counterparties

• Pinpoints a company’s positions, exposures, and available liquidity

• Is demanded by regulators and auditors

 As the markets change, the volume of data to be managed is increasing, adding greater complexity

to the process. Data management has for too long been regarded as an infrastructure problem for IT to

solve. But this is changing.The reality is that data management is as central to successful, sustainable

operations as risk management. Data management is not a technology or a tool – it is a business enabler.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 7 |

At Asset Control, we view data management as a critical process which ensures that essential business

decisions are based on accurate, consistent and verifiable information.

Traditional File Based System- The traditional file system (TFS) is a method of storing and arranging

computer files and the information in the file (data). Basically it organizes these files into a database for

the storage, organization, manipulation, and retrieval by the computer's operating system.”

1.3 BASIC CONCEPTS

In an organization, the data is the most basic resource. To run the organization efficiently, the proper

organization and management of data is essential. The formal definition of the major terms used in

databases and database systems is defined in this section.

1.3.1 DATA AND INFORMATION

• Data: The term data may be defined as known facts that could be recorded and stored on Computer

Media. It is also defined as raw facts from which the required information is produced. Data

represents unorganized and unprocessed facts.

o Usually data is static in nature.

o It can represent a set of discrete facts about events.

o Data is a prerequisite to information.

o An organization sometimes has to decide on the nature and volume of data that is required

for creating the necessary information.

• Information: Data and information are closely related and are often used interchangeably.

Information isnothing but refined data. In other way, we can say, information is processed,

organized orsummarized data. According to Burch et. al., “Information is data that have been put

intoa meaningful and useful content and communicated to a recipient who uses it to

madedecisions”. Information consists of data, images, text, documents and voice, but always ina

meaningful content. So we can say, that information is something more than mere data.Data are

processed to create information. The recipient receives the information and thenmakes a decision

and takes an action, which may triggers other actions

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 8 |

o Information can be considered as an aggregation of data (processed data) which makes

decision making easier.

o Information has usually got some meaning and purpose.

In these days, there is no lack of data, but there is lack of quality information. The

quality information means information that is accurate, timely and relevant, which are the

three major key attributes of information.

1. Accuracy: It means that the information is free from errors, and it clearly andaccurately reflects

the meaning of data on which it is based. It also means it is freefrom bias and conveys an accurate

picture to the recipient.

2. Timeliness: It means that the recipients receive the information when they need itand within the

required time frame.

3. Relevancy: It means the usefulness of the piece of information for the corresponding persons.

It is a very subjective matter. Some information that is relevant for one person might not be

relevant for another and vice versa e.g., the price of printer is irrelevant for a person who wants to

purchase computer. So, organization that have good information system, which produce

information that is accurate, timely and relevant will survive and those that do not realize the

importance of information will soon be out of business.

Figure1.1 Data, Information, Knowledge and Wisdom

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 9 |

1.3.2 FIELDS AND RECORDS:

Fields: It is the smallest unit of the data that has meaning to its users and is also called dataitem or data

element. Name, Address and Telephone number are examples of fields. Theseare represented in the

database by a value.A database field is a set of data values, of the same data type, in a table. It is also

referred to as a column or an attribute.

Most databases also allow fields to hold complex data like pictures, entire files, and even movie

clips. A field that allows the same data type does not mean it only has simple text values. Some databases

allow the data to be stored as a file on the Operating System, while the field data only contains a pointer

or link to the actual file. This is done to keep the database size manageable, given that smaller database

sizes means less time for backups, as well as for searching data within the database.

A simple example is a table 1.1 that saves employee’s job record. The fields in this table could

be the following: Employee ID, Last Name, First Name, Position, Department, and Hire Date.

Employee

ID

Last

Name

First

Name

Position Department Hire Date

00108 Doe John Assistant

Manager

Human

Resources

November 16,

2000

00109 Parker Anne Supervisor Financial

Services

May 1, 2003

Table 1.1: Example of a table with fields

Records:Records provide a practical way to store and retrieve data from the database. Each record can

have different kinds of data, and thus a single row could have several types of information. A customer

record could contain an ID number, name, birth date, cell phone number, and email.

There is one exception to the above rule. A good database design should include a primary key for the

table. This means that each record in the data set has one field that is unique among all records and that

it can't be repeated. Tools like Microsoft Access let you easily set a field to be the primary key; this is

usually a field that is auto-numbered (starting at 1) and keeps adding as you add rows/records to the table.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 10 |

The term ''record'' can also be pronounced reCORD, meaning to save information/data. This is also a

helpful means to identify a database record: It's a record, or the data, that has been reCORDed. A group

of records can be called a file, data set, or table. Microsoft Access and other database tools refer to these

objects as tables: This lesson will refer to the collective group of records as a table.A record is a group of

data saved in a table. It is a set of fields, like an employee’s job record as shown below in table 1.2.

Employee

ID

Last

Name

First

Name

Position Department Hire Date

00108 Doe John Assistant

Manager

Human

Resources

November 16,

2000

00109 Parker Anne Supervisor Financial

Services

May 1, 2003

Table 1.2: Example of a Record

A record in a database is an object that can have one or more values. Groups of records are then saved in

a table; the table determines the data that each record may have. Various tables hold various records in a

database.A new record produces a new row in the table that’s why records are oftentimes labeled as rows.

Separate fields are referred to as columns because they are identical for every record in the table. Record

and row can be utilised mutually, but nearly all database management systems utilise row for error

messages and queries. Records provide a practical way to save and pull out data from the database. Each

record can have diverse types of data, and thus a single row could have several kinds of information.

Records can be easily created, altered and erased without affecting other data in the database. An ideal

database design should have a primary key for the table. A primary key is a unique field in each record

in a database. In an employee’s job record sample above, the Employee ID is the primary key. A group

of records can be called a file, data set or table.

1.4 TRADITIONAL FILE BASED SYSTEM

A file processing system is a collection of files and programs that access/modify these files. Typically,

new files and programs are added over time (by different programmers) as new information needs to be

stored and new ways to access information are needed. Problems with file processing systems:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 11 |

 • Data redundancy and inconsistency

 • Difficulty of accessing data

 • Problems with concurrent access

Example: assume I’m paying for groceries with my Debit/Credit card at the same time my pay check is

being deposited (and my bank uses a file processing system):

Withdrawal program

1. Read balance from checking account file as

Rs. 50000.

3. subtract Rs. 10000 (for groceries)

4. update checking account file(new balance:

Rs. 40000)

Deposit program

1. Read balance from checking account file as

Rs. 50000.

2. add Rs. 40000 (my salary)

3. update checking account file (new balance:

Rs. 90000)

It is difficult to prevent such problems unless programs (example: withdrawal and deposit) are

coordinated or integrated.

• Atomicity problems - ensuring that a system failure during a database update does not leave the

database in an inconsistent state

• Security problems

 – not all users should have access to all data

 – example: bank payroll personnel shouldn’t know my checking account balance

 – difficult to enforce security in an ad hoc system

• Integrity problems

 – data may need to satisfy certain conditions, called consistency constraints

 – difficult to enforce/add/change consistency constraints in a file processing system

DBMSs were developed to remedy these problems.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 12 |

Traditional file processing systems include manual systems and also computer based file systems that were linked

to particular application programs. This is the type of file processing that you used with your 3GL programming.

They share a number of characteristics. Let’s see how a traditional file system looks in figure 1.2.

 Figure 1.2: Traditional File System

1.4.1 DRAWBACKS OF TRADITIONAL FILE BASED SYSTEM

There are a number of disadvantages associated with traditional file processing systems.

1. Data duplication

When files are duplicated and held in a number of locations situations can arise that will cause

data to be inconsistent.

• Corrections or modifications made in one location may not be updated in another. For example,

customer addressfiles held by the Accounts Department may be updated while those held by Sales

are not updated. For the customer this may mean that the account arrives but the goods do not.

• Modifications made to data files may also lead to less obvious discrepancies. For example a

product name may be spelt differently in two locations eg. Bisleri, Bislery. A report

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 13 |

generated calculating sales to customers by product may then include the same customers

twice. This may not be obvious if the report is a summary style report.

2. Poor data control

File systems have no centralised control of the data descriptions. Tables and field names may be used

in different locations to mean different things. For example, the Sales department's files may list a

customer as having a single Name field that is made up of customers Initial and Last name eg Rahul

Gupta. The Accounts department may keep the customer’s name in three separate fields; First name,

Initial, Last Name. This may make it difficult to compare the data in the two files or at least require

additional time in programming the comparison.

3. Inadequate data manipulation capabilities

Data in traditional file systems is not easily related, particularly if the files have been developed for

separate purposes. If the organisation requires information to be generated that accesses data from

several unrelated files the task may prove difficult or require re-entry of data. For example, in a library

the catalogue of books may be held in one file. Books on order for the library may be held in another

file. When books are received the catalogue will need to be manually updated if the two files are not

related.

4. Program data dependence

File data is stored within each of the applications that use that data eg A sales transaction program may

have several files relevant to it, Customer, Stock_in_hand, Sale_Info. These files are integrated into the

program.

5. Limited data sharing

The dependence of the data on the program means that the files are not necessarily suitable for a new

program that is being developed. The new program may need its data in another form or require

additional data that is not held.

6. Lengthy development times

Each new application requires development of the program along with the development of the relevant

files for that application. Although the data may be held elsewhere in the organization the data will need

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 14 |

to be imported or re-entered into the new files. This takes time. As organizations grow and change they

need to change their internal applications quickly to meet new demands. Lengthy development times

are a disadvantage.

7. Program maintenance

File maintenance can be time consuming in traditional file processing systems. Changes to files mean

changes to application programs

1.5 DBMS FUNCTIONS

Here are several functions that a DBMS performs to ensure data integrity and consistency of data in the

database. The ten functions in the DBMS are: data dictionary management, data storage management,

data transformation and presentation, security management, multiuser access control, backup and

recovery management, data integrity management, database access languages and application

programming interfaces, database communication interfaces, and transaction management.

1. Data Dictionary Management

Data Dictionary is where the DBMS stores definitions of the data elements and their relationships

(metadata). The DBMS uses this function to look up the required data component structures and

relationships. When programs access data in a database they are basically going through the DBMS. This

function removes structural and data dependency and provides the user with data abstraction. In turn, this

makes things a lot easier on the end user. The Data Dictionary is often hidden from the user and is used

by Database Administrators and Programmers.

 2. Data Storage Management

This particular function is used for the storage of data and any related data entry forms or screen

definitions, report definitions, data validation rules, procedural code, and structures that can handle video

and picture formats. Users do not need to know how data is stored or manipulated. Also involved with

this structure is a term called performance tuning that relates to a database’s efficiency in relation to

storage and access speed.

3. Data Transformation and Presentation

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 15 |

 [</span]link title> This function exists to transform any data entered into required data structures. By

using the data transformation and presentation function the DBMS can determine the difference between

logical and physical data formats.

4. Security Management

This is one of the most important functions in the DBMS. Security management sets rules that determine

specific users that are allowed to access the database. Users are given a username and password or

sometimes through biometric authentication (such as a fingerprint or retina scan) but these types of

authentication tend to be more costly. This function also sets restraints on what specific data any user can

see or manage.

5. Multiuser Access Control

 Data integrity and data consistency are the basis of this function. Multiuser access control is a very useful

tool in a DBMS, it enables multiple users to access the database simultaneously without affecting the

integrity of the database.

6. Backup and Recovery Management

 Backup and recovery is brought to mind whenever there is potential outside threats to a database. For

example if there is a power outage, recovery management is how long it takes to recover the database

after the outage. Backup management refers to the data safety and integrity; for example backing up all

your mp3 files on a disk.

7. Data Integrity Management

The DBMS enforces these rules to reduce things such as data redundancy, which is when data is stored

in more than one place unnecessarily, and maximizing data consistency, making sure database is returning

correct/same answer each time for same question asked.

8. Database Access Languages and Application Programming Interfaces

A query language is a nonprocedural language. An example of this is SQL (structured query language).

SQL is the most common query language supported by the majority of DBMS vendors. The use of this

language makes it easy for user to specify what they want done without the headache of explaining how

to specifically do it.

http://www.example.com/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 16 |

9. Database Communication Interfaces

This refers to how a DBMS can accept different end user requests through different network

environments. An example of this can be easily related to the internet. A DBMS can provide access to

the database using the Internet through Web Browsers (Mozilla Firefox, Internet Explorer, and Netscape).

1.6CHECK YOUR PROGRESS

1. To create a file ______________

a. Allocate the space in the file system

b. Make an entry for new file in directory

c. Allocate the space in the file system and make an entry for new file in directory

d. None of above

2. File system can be represented by _____________.

3. Which file is a sequence of bytes organized into blocks understandable by the system’s linker?

4. Mapping of file is managed by __________.

5. _______ is a unique tag, usually a number identifies the file in the file system.

1.7 SUMMARY

An organization must have accurate and reliable data (information) for effective decision making. Data

(information) is the backbone and most critical resource of an organization that enables managers and

organizations to gain a competitive edge. In this age of information explosion, where people are

bombarded with data, getting the right information, in the rightamount, at the right time is not an easy

task. So, only those organizations will survive thatsuccessfully manage information.

A database system simplifies the tasks of managing the data and extracting useful information in

a timely fashion. A database system is an integrated collection of related files, along with the details of

the interpretation of the data. A Data Base Management System is a software system or program that

allows access to data contained in a database. The objective of the DBMS is to provide a convenient and

effective method of defining, storing, and retrieving the information stored in the database. The database

and database management systems have become essential for managing business, governments, schools,

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 17 |

universities, banks etc.File system is collection of data. In this system, user has to write procedures for

managing database. It provides details of data representation and storage of data. In this –

• Data is stored in files.

• Each file has specific format.

• Programs that use these files depend on knowledge about that format.

• In earlier days, database applications were built on top of file systems.

This approach is mostly obsolete but –

• Understanding problems inherent in file based systems may prevent us from repeating these

problems in our database system.

• Understanding how file system works is extremely useful when converting a file-based system to

a database system.

Basically, it is a collection of application programs that performs services for end users such as production

of reports. Each file defines and manages its own data.It doesn’t have a crash mechanism i.e., if system

crashes while entering some data, then content of file will be lost. This is disadvantage of traditional file

based system. Also, it is very difficult to protect a file under the file system. This system can’t efficiently

store and retrieve data.

1.8 KEYWORDS

• DATA- Data are measured, collected and reported, and analysed, whereupon it can be visualized

using graphs, images or other analysis tools. Data as a general concept refers to the fact that some

existing information or knowledge is represented or coded in some form suitable for better usage

or processing.

• RECORD-A record is a database entry that may contain one or more values. Groups of records

are stored in a table, which defines what types of data each record may contain. Databases may

contain multiple tables which may each contain multiple records.

• FILE- A file is a collection of records. For example, a telephone book is analogous to a file.

• FIELD- In computer science, data that has several parts, known as a record, can be divided into

fields. Relational databases arrange data as sets of database records, so called rows. Each record

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 18 |

consists of several fields; the fields of all records form the columns. Examples of fields: name,

gender, hair colour.

• TFS- Traditional File System

1.9SELF-ASSESSMENT TEST

1. What are data and information, and how are they related in a database?

2. Who is E.F. Codd, and why is he significant in the development of modern database systems?

3. What is Enterprise Resource Planning (ERP), and what kind of a database is used in an ERP

application?

4. Discuss a traditional file system in detail.

5. How a traditional file system differ from Data base system, what are the drawbacks of it?

1.10ANSWERS TO CHECK YOUR PROGRESS

1. C

2. File extension

3. Object file

4. File metadata

5. File indentifier

1.11REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.geeksforgeeks.org/traditional-file-system/

• https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/content/dbsystem

s/file_process.htm

• https://whatisdbms.com/what-is-traditional-file-processing-system-and-its-characteristics/

https://www.geeksforgeeks.org/traditional-file-system/
https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/content/dbsystems/file_process.htm
https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/content/dbsystems/file_process.htm
https://whatisdbms.com/what-is-traditional-file-processing-system-and-its-characteristics/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 19 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 2 VETTER:

DATABASE APPROACH- CHARACTERISTICS OF DATABASE

APPROACH

2.0 Learning Objective

2.1 Introduction

2.2 Definition

2.3 What is DBMS?

2.4 Database Approach

2.5 Characteristics of Database approach

2.6 Advantages of DBMS

2.7 Disadvantages of DBMS

2.8 Check Your Progress

2.9 Summary

2.10 Keywords

2.11 Self-Assessment Test

2.12 Answers to check your progress

2.13 References / Suggested Readings

2.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the procedural language for

SQL. The architecture of PL/SQL in detailed will be studies and to get familiar with the loops

that can be used in the procedural language for SQL.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 20 |

2.1 INTRODUCTION

DBMS stands for Database Management System. We can break it like this DBMS = Database +

Management System. Database is a collection of data and Management System is a set of programs to

store and retrieve those data. Based on this we can define DBMS like this: DBMS is a collection of inter-

related data and set of programs to store & access those data in an easy and effective manner.Database

systems are basically developed for large amount of data. When dealing with huge amount of data, there

are two things that require optimization: Storage of data and retrieval of data.

According to the principles of database systems, the data is stored in such a way that it acquires

lot less space as the redundant data (duplicate data) has been removed before storage. Let’s take a layman

example to understand this:

In a banking system, suppose a customer is having two accounts, one is saving account and another

is salary account. Let’s say bank stores saving account data at one place (these places are called tables we

will learn them later) and salary account data at another place, in that case if the customer information

such as customer name, address etc. are stored at both places then this is just a wastage of storage

(redundancy/ duplication of data), to organize the data in a better way the information should be stored at

one place and both the accounts should be linked to that information somehow. The same thing we achieve

in DBMS.

Fast Retrieval of data: Along with storing the data in an optimized and systematic manner, it is

also important that we retrieve the data quickly when needed. Database systems ensure that the data is

retrieved as quickly as possible.

2.2 DEFINITION

The DBMS software together with the Database is called a database system. In other words,it can be

defined as an organization of components that define and regulate the collection, storage, management

and use of data in a database. Furthermore, it is a system whose overall purpose is to record and maintain

information. A database system consists of fou major components as shown in Figure 2.1.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 21 |

Figure 2.1: Database system

2.3 WHAT IS DBMS?

We have studied the concepts of data item (also called field), record and file in the previous chapter, we

have seen information regarding all the employees being stored in a file called "employee-file". The file

contained many records, one per employee. Each employee record consisted of data items such as

employee number, name and basic pay. Similar examples of files could be student-file, purchase-order-

file, and invoice- file and so on. In typical business environments, it is always essential to be able to

produce the right information at the right time with minimum efforts. Assume that a manufacturer of

goods uses 10 such different files (one for suppliers, one for customers, one for accounts, etc.). It might

not be very easy to answer a query such as: How many of our customers have credit balance with us for

over a month now and whose average purchases from December last year to February this year have been

above average? You can imagine the complexity involved in providing this information. It is not that such

a report cannot be generated at all. It certainly can be produced, however, it will require a lot of effort.

We shall see the reasons behind this and also study what better systems exist. More specifically, we shall

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 22 |

study how a database is a better solution than a set of files. Also, a Database Management System (DBMS)

scores over File Management System (FMS) on many counts.

The DBMS has evolved over the years from being a simple means of arranging data to a much

more sophisticated organisation and retrieval of data as and when required, in real-time. We shall study

the different types of databases and understand the differences between them. Relational Database

Management Systems (RDBMS), about which we shall study too, have become the most popular of them

all for many reasons. Our aim is also to see how we canaccessdata from a RDBMS using the Structured

Query Language (SQL). The four major components are:

1. Data:The whole data in the system is stored in a single database. This data in thedatabase are both

shared and integrated. Sharing of data means individual pieces of datain the database is shared

among different users and every user can access the same pieceof data but may be for different

purposes. Integration of data means the database can be function of several distinct files with

redundancy controlled among the files.

2. Hardware:The hardware consists of the secondary storage devices like disks, drumsand so on,

where the database resides together with other devices. There is two types of hardware. The first

one, i.e., processor and main memory that supports in running the DBMS. The second one is the

secondary storage devices, i.e., hard disk, magnetic disk etc., that are used to hold the stored data.

3. Software:A layer or interface of software exists between the physical database andthe users. This

layer is called the DBMS. All requests from the users to access the databaseare handled by the

DBMS. Thus, the DBMS shields the database users from hardware details. Furthermore, the

DBMS provides the other facilities like accessing and updating the data inthe files and adding and

deleting files itself.

4. Users: The users are the people interacting with the database system in any way.There are four

types of users interacting with the database systems. These are ApplicationProgrammers, online

users, end users or naive users and finally the Database Administrator (DBA).

Although using files was a satisfactory approach for small organisations and businesses, it was not quite

easy to work with for larger establishments. Hence, a need for storing information centrally and using it

as and when needed was felt. This would take care of the problems with files.The most important change

brought about by DBMS is that the programs no longer interact with the data files directly. Instead, they

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 23 |

communicate with the DBMS, which acts as a middle agency. It controls the flow of information from

and to the database, as shown in Fig. 2.2.

If we compare this figure with the earlier one, the initial reaction might be that an extra layer of complexity

has been added. However, this extra layer is not a cause for worry as it is completely transparent to the

end user and, in fact, it helps. As the figure shows, the files are integrated. This means that there is no

duplication of data. Instead, all the files are stored together. They are managed by DBMS. In fact, the user

or programmer does not even know about the files used by DBMS. DBMS internally uses data structures

such as chains, pointers and indexes.

Figure 2.2: Database approach

However, the user or programmer need not worry about the internal details of how the data is stored such

as whether it is on one disk or more, on which sectors, in a continuous pattern or in chunks, in what data

structures (e.g. chains/indexes) and so on. If the user wants to find all the invoices in which the value is

> $500, DBMS can produce the result. It may use the indexes on invoice value to achieve this, or it may

go through the invoices record sequentially. The user need not worry. Only the category of people called

Data Base Administrator (DBA) need to know the details of data storage. This is because they are

concerned with the performance and security aspects of DBMS. This is how DBMS hides all the

complexities involved in maintaining files and provides a common and simple interface. There is another

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 24 |

interesting consequence illustrated in Fig. 2.2. In it, User 2 is interacting directly with the database,

without needing to use an application program. This is possible since DBMS provides a set of commands

for interacting with and manipulating the database. At the same time, User 1 wants to access/manipulate

the database, which is not directly possible by using its set of DBMS commands. Therefore,the user's

interaction is through an application program. The third case is a batch program that executes without a

user, sitting and interacting with the program database continuously through a terminal. The batch

program executes onits own, once scheduled to run at a specific time. Thus, online (simple and complex)

as well as batch data processing is easily handled by DBMS.

2.4 DATABASE APPROACH

In order to remove all limitations of the File Based Approach, a new approach was required that must be

more effective known as Database approach. The Database is a shared collection of logically related data,

designed to meet the information needs of an organization. A database is a computer based record keeping

system whose over all purpose is to record and maintains information. The database is a single, large

repository of data, which can be used simultaneously by many departments and users. Instead of

disconnected files with redundant data, all data items are integrated with a minimum amount of

duplication.

The database is no longer owned by one department but is a shared corporate resource. The

database holds not only the organization’s operational data but also a description of this data. For this

reason, a database is also defined as a self-describing collection of integrated records. The description of

the data is known as the Data Dictionary or Meta Data (the ‘data about data’). It is the self-describing

nature of a database that provides program-data independence.

A database implies separation of physical storage from use of the data by an application program

to achieve program/data independence. Using a database system, the user or programmer or application

specialist need not know the details of how the data are stored and such details are “transparent to the

user”. Changes (or updating) can be made to data without affecting other components of the system. These

changes include, for example, change of data format or file structure or relocation from one device to

another.

2.5 CHARACTERSTICS OF DATABASE APPROACH

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 25 |

There are number of characteristics that distinguish the database approach from the much older approach

of programming with files.

• In traditional file processing, each user defines and implements the files needed for a specific

software application as part of programming the application.

For example, one user, the grade reporting office, may keep files on students and their grades.

Programs to print a student’s transcript and to enter new grades are implemented as part of the application.

A second user, the accounting office, may keep track of students’ fees and their payments. Although both

users are interested in data about students, each user maintains separate files— and programs to

manipulate these files—because each requires some data not available from the other user’s files. This

redundancy in defining and storing data results in wasted storage space and in redundant efforts to

maintain common up-to-date data.

• In the database approach, a single repository maintains data that is defined once and then

accessed by various users. In file systems, each application is free to name data elements

independently. In contrast, in a database, the names or labels of data are defined once, and

used repeatedly by queries, transactions, and applications.

The main characteristics of the database approach (feature of database approach) and how it differs from

the traditional file system i.e file-processing approach:

• Self-describing nature of a database system

• Insulation between programs and data, and data abstraction

• Support of multiple views of the data

• Sharing of data and multiuser transaction processing

Self-describing nature of a database system:

1. A fundamental characteristics of database approach is that the database system contains not only the

database itself but also a complete definition or description of the database structure and constraints.

This definition is stored in the DBMS catalog, which contains information such as the structure of

each file, the type and storage format of each data item, and various constraints on the data. The

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 26 |

information stored in the catalog is called meta-data, and it describes the structure of the primary

database.

2. The catalog is used by the DBMS software and also by database users who need information about

the database structure. A general-purpose DBMS software package is not written for a specific

database application. Therefore, it must refer to the catalog to know the structure of the files in a

specific database, such as the type and format of data it will access. The DBMS software must work

equally well with any number of database applications—for example, a university database, a banking

database, or a company database—as long as the database definition is stored in the catalog.

3. In traditional file processing, data definition is typically part of the application programs themselves.

Hence, these programs are constrained to work with only one specific database, whose structure is

declared in the application programs.

Insulation between programs and data, and data abstraction

1. In traditional file processing, the structure of data files is embedded in the application programs, so

any changes to the structure of a file may require changing all programs that access that file. By

contrast, DBMS access programs do not require such changes in most cases. The structure of data

files is stored in the DBMS catalog separately from the access programs. We call this property

program-data independence.

2. For example, a file access program may be written in such a way that it can access only STUDENT

records of the structure. If we want to add another piece of data to each STUDENT record, say the

Birth_date , such a program will no longer work and must be changed. By contrast, in a DBMS

environment, we only need to change the description of STUDENT records in the catalog to reflect

the inclusion of the new data item Birth_date; no programs are changed.

3. The next time a DBMS program refers to the catalog, the new structure of STUDENT records will be

accessed and used. In some types of database systems, such as object-oriented and object-relationa

systems, users can define operations on data as part of the database definitions. An operation (also

called a function or method) is specified in two parts. The interface (or signature) of an operation

includes the operation name and the data types of its arguments (or parameters). The implementation

(or method) of operation is specified separately and can be changed without affecting the interface.

User application programs can operate on the data by invoking these operations through their names

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 27 |

and arguments, regardless of how the operations are implemented. This may be termed program-

operation independence.

4. The characteristic that allows program-data independence and program-operation independence is

called data abstraction. A DBMS provides users with a conceptual representation of data that does not

include many of the details of how the data is stored or how the operations are implemented.

Informally, a data model is a type of data abstraction that is used to provide this conceptual

representation. The data model uses logical concepts, such as objects, their properties, and their

interrelationships, that may be easier for most users to understand than computer storage concepts.

Hence, the data model hides storage and implementation details that are not of interest to most

database users.

2.6 ADVANTAGES OF DBMS

There are several advantages of Database management system over file system. Few of them are as

follows:

• No redundant data: Redundancy removed by data normalization. No data duplication saves

storage and improves access time.

• Data Consistency and Integrity: As we discussed earlier the root cause of data inconsistency is

data redundancy, since data normalization takes care of the data redundancy, data inconsistency

also been taken care of as part of it

• Data Security: It is easier to apply access constraints in database systems so that only authorized

user is able to access the data. Each user has a different set of access thus data is secured from the

issues such as identity theft, data leaks and misuse of data.

• Privacy: Limited access means privacy of data.

• Easy access to data – Database systems manages data in such a way so that the data is easily

accessible with fast response times.

• Easy recovery: Since database systems keeps the backup of data, it is easier to do a full recovery

of data in case of a failure.

• Flexible: Database systems are more flexible than file processing systems.

https://beginnersbook.com/2015/05/normalization-in-dbms/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 28 |

2.7 DISADVANTAGES OF DBMS

Here are some major disadvantages of DBMS

• DBMS implementation cost is high compared to the file system

• Complexity: Database systems are complex to understand

• Performance: Database systems are generic, making them suitable for various applications.

However this feature affect their performance for some applications

2.8 CHECK YOUR PROGRESS

1. Which of the following is not a type of database management system?

(a) Hierarchical (b) Network

(c) Relational (d) Sequential.

2. A schema describes

(a) Data elements (b) Records and files

(c) Record relationship (d) All of the above.

3. Which data management language component enabled the DBA to define schema components?

(a) DML (b) Subschema DLL

(c) Schema DLL (d) All of these.

4. Which statement is false regarding data independence?

(a) Hierarchical data model suffers from data independence.

(b) Network model suffers from data independence.

(c) Relational model suffers from logical data independence.

(d) Relational model suffers from physical data independence.

5. Databases may be more expensive to maintain than files because of

(a) backup and recovery needs

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 29 |

(b) the complexity of the database environment

(c) the need for specialized personnel

(d) all of the above.

6. Typically, a database consists ____________ but can support mul ____________.

(a) table, queries (b) information, data

(c) physical view, logical view (d) information view, data view.

2.9 SUMMARY

A DBMS is a software used to store and manage data. The DBMS was introduced during 1960's to store

any data. It also offers manipulation of the data like insertion, deletion, and updating of the data.DBMS

system also performs the functions like defining, creating, revising and controlling the database. It is

specially designed to create and maintain data and enable the individual business application to extract

the desired data.The main purpose of database systems is to manage the data. Consider a university that

keeps the data of students, teachers, courses, books etc. To manage this data we need to store this data

somewhere where we can add new data, delete unused data, update outdated data, retrieve data, and to

perform these operations on data we need a Database management system that allows us to store the data

in such a way so that all these operations can be performed on the data efficiently.

Simply put, a database system is a computerised record-keeping system with a lot of facilities. It is

convenient to keep records and information in the form of computer databases rather than in manual

systems. Fig. 2.3 shows the three DBMS models; Hierarchical, Network and Relational.

 The term model refers to the way data is organised in and accessible from DBMS. These three

models differ in a number of ways, as we shall study later.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 30 |

Figure 2.3: DBMS Models

We will concentrate on RDBMS and, as such, use an example from RDBMS to understand how users can

access and manipulate databases. In RDBMS, data records (e.g. customer, student, book etc.) are stored

on the hard disk by the operating system (O/S) such as UNIX and Windows 2000. The RDBMS interacts

with the O/S and allows the user/programmer to view the records inthe form of tables. Obviously, there

is no such thing as a table on the harddisk.

2.10 KEYWORDS

• DATA INTERGRITY- Data integrity refers to the accuracy and consistency (validity) of data

over its lifecycle. ... Data integrity can be compromised in several ways. Each time data is

replicated or transferred, it should remain intact and unaltered between updates.

• DATA REDUNDANCY-Data redundancy is a condition created within a database or data storage

technology in which the same piece of data is held in two separate places. This can mean two

different fields within a single database, or two different spots in multiple software environments

or platforms.

• ENDUSER-An end user is the person that a software program or hardware device is designed for.

The term is based on the idea that the "end goal" of a software or hardware product is to be useful

to the consumer. The end user can be contrasted with the developers or programmers of the

product.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 31 |

• DATA MODELS-Data Models are fundamental entities to introduce abstraction in a DBMS.

Data models define how data is connected to each other and how they are processed and stored

inside the system. The very first data model could be flat data-models, where all the data used are

to be kept in the same plane.

2.11 SELF-ASSESSMENT TEST

1. What is data?

2. What is Information?

3. What is the difference between data and information?

4. What is Metadata?

5. Explain various types of Metadata?

6. What is the difference between active and passive data dictionary?

7. What is data base?

8. What are the main characteristics of a database?

9. What are the capabilities of a database?

2.12 ANSWERS TO CHECK YOUR PROGRESS

1. D

2. D

3. D

4. D

5. D

6. C

2.13 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 32 |

• https://padakuu.com/article/237-characteristics-of-the-database-approach

• https://whatisdbms.com/characteristics-of-database-approach/

• https://ecomputernotes.com/fundamental/what-is-a-database/database-approach

• https://beginnersbook.com/2015/04/dbms-tutorial/

https://padakuu.com/article/237-characteristics-of-the-database-approach
https://whatisdbms.com/characteristics-of-database-approach/
https://ecomputernotes.com/fundamental/what-is-a-database/database-approach
https://beginnersbook.com/2015/04/dbms-tutorial/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 33 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 3 VETTER:

RESPONSIBILITY OF DATABASE ADMINISTRATOR &

CLASSIFICATION OF DBMS

3.0 Learning Objective

3.1 Introduction

3.2 Definition

3.3 Responsibility of Database Administrator

3.4 Classification of Database systems

3.5 DBMS Languages and Interfaces

3.6 Client- Server Model and Centralized Model of DBMS

3.7 Data Dictionary

3.8 Check Your Progress

3.9 Summary

3.10 Keywords

3.11 Self-Assessment Test

3.12 Answers to check your progress

3.13 References / Suggested Readings

3.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the responsibility of Database

administrator and the meaning, as well as concept of centralized database and client server

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 34 |

model of database. To know the about the classification of databases. To understand the

interfaces and DBMS languages.

3.1 INTRODUCTION

In this chapter, we firstly focus on centralized as well as client server model of databases. The client-

server model, or client-server architecture, is a distributed application framework dividing tasks between

servers and clients, which either reside in the same system or communicate through a computer network

or the Internet. The client relies on sending a request to another program in order to access a service made

available by a server. The server runs one or more programs that share resources with and distribute work

among clients.The client server relationship communicates in a request–response messaging pattern and

must adhere to a common communications protocol, which formally defines the rules, language, and

dialog patterns to be used. Client-server communication typically adheres to the TCP/IP protocol

suite.TCP protocol maintains a connection until the client and server have completed the message

exchange. TCP protocol determines the best way to distribute application data into packets that networks

can deliver, transfers packets to and receives packets from the network, and manages flow control and

retransmission of dropped or garbled packets. IP is a connectionless protocol in which each packet

traveling through the Internet is an independent unit of data unrelated to any other data units.

Client requests are organized and prioritized in a scheduling system, which helps servers cope in

the instance of receiving requests from many distinct clients in a short space of time. The client-server

approach enables any general-purpose computer to expand its capabilities by utilizing the shared

resources of other hosts. Popular client-server applications include email, the World Wide Web, and

network printing.

3.2 DEFINITION

Client- Server Database- Client-server denotes a relationship between cooperating programs in an

application, composed of clients initiating requests for services and servers providing that function or

service.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 35 |

Centralized Database-A centralized database (sometimes abbreviated CDB) is a database that is

located, stored, and maintained in a single location. This location is most often a central computer

or database system, for example a desktop or server CPU, or a mainframe computer.

Distributed Database- A distributed database (DDB) is an integrated collection of databases that is

physically distributed across sites in a computer network. A distributed database management system

(DDBMS) is the software system that manages a distributed database such that the distribution aspects

are transparent to the users.

Data Dictionary- A data dictionary is a centralized repository of metadata. Metadata is data about data.

Some examples of what might be contained in an organization's data dictionary include: The names of

fields contained in all of the organization's databases.

3.3 RESPONSIBILITY OF DATABASE ADMINISTRATOR

A database administrator's (DBA) primary job is to ensure that data is available, protected from

loss and corruption, and easily accessible as needed. Below are some of the chief responsibilities that

make up the day-to-day work of a DBA. DSP deliver an outsourced DBA service in the UK,

providing Oracle Support and SQL Server Support; whilst mindset and toolset may be different, whether

a database resides on premise or in a Public / Private Cloud, the role of the DBA is not that different.

1. Software installation and Maintenance

A DBA often collaborates on the initial installation and configuration of a new Oracle, SQL Server etc.

database. The system administrator sets up hardware and deploys the operating system for the database

server, then the DBA installs the database software and configures it for use. As updates and patches are

required, the DBA handles this on-going maintenance.

And if a new server is needed, the DBA handles the transfer of data from the existing system to the new

platform.

2. Data Extraction, Transformation, and Loading

Known as ETL, data extraction, transformation, and loading refers to efficiently importing large volumes

of data that have been extracted from multiple systems into a data warehouse environment.

https://www.dsp.co.uk/oracle-database-support/
https://www.dsp.co.uk/sql-server-support-2/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 36 |

This external data is cleaned up and transformed to fit the desired format so that it can be imported into a

central repository.

3. Specialized Data Handling

Today’s databases can be massive and may contain unstructured data types such as images, documents,

or sound and video files. Managing a very large database (VLDB) may require higher-level skills and

additional monitoring and tuning to maintain efficiency.

4. Database Backup and Recovery

DBAs create backup and recovery plans and procedures based on industry best practices, then make sure

that the necessary steps are followed. Backups cost time and money, so the DBA may have to persuade

management to take necessary precautions to preserve data.

System admins or other personnel may actually create the backups, but it is the DBA’s responsibility to

make sure that everything is done on schedule.

In the case of a server failure or other form of data loss, the DBA will use existing backups to restore lost

information to the system. Different types of failures may require different recovery strategies, and the

DBA must be prepared for any eventuality. With technology change, it is becoming ever more typical for

a DBA to backup databases to the cloud, Oracle Cloud for Oracle Databases and MS Azure for SQL

Server.

5. Security

A DBA needs to know potential weaknesses of the database software and the company’s overall system

and work to minimise risks. No system is one hundred per cent immune to attacks, but implementing best

practices can minimise risks.

In the case of a security breach or irregularity, the DBA can consult audit logs to see who has done what

to the data. Audit trails are also important when working with regulated data.

6. Authentication

Setting up employee access is an important aspect of database security. DBAs control who has access and

what type of access they are allowed. For instance, a user may have permission to see only certain pieces

of information, or they may be denied the ability to make changes to the system.

https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/sql-server-azure/
https://www.dsp.co.uk/sql-server-azure/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 37 |

7. Capacity Planning

The DBA needs to know how large the database currently is and how fast it is growing in order to make

predictions about future needs. Storage refers to how much room the database takes up in server and

backup space. Capacity refers to usage level.

If the company is growing quickly and adding many new users, the DBA will have to create the capacity

to handle the extra workload.

8. Performance Monitoring

Monitoring databases for performance issues is part of the on-going system maintenance a DBA performs.

If some part of the system is slowing down processing, the DBA may need to make configuration changes

to the software or add additional hardware capacity. Many types of monitoring tools are available, and

part of the DBA’s job is to understand what they need to track to improve the system. 3rd party

organisations can be ideal for outsourcing this aspect, but make sure they offer modern DBA support.

9. Database Tuning

Performance monitoring shows where the database should be tweaked to operate as efficiently as possible.

The physical configuration, the way the database is indexed, and how queries are handled can all have a

dramatic effect on database performance.

With effective monitoring, it is possible to proactively tune a system based on application and usage

instead of waiting until a problem develops.

10. Troubleshooting

DBAs are on call for troubleshooting in case of any problems. Whether they need to quickly restore lost

data or correct an issue to minimize damage, a DBA needs to quickly understand and respond to problems

when they occur.

3.4 CLASSIFICATION OF DATABASE SYSTEMS

A Database Management System or DBMS is a single or set of computer programs that are responsible for

creating, editing, deleting and generally maintaining a database or collection of data records. They type of

database management system is determined by the database model. A database model is the manner in which the

https://www.dsp.co.uk/modern-dba-support-provider/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 38 |

data collection is stored, managed and administered. The various database management systems based on these

data models are:

3.4.1 Relational Database Management Systems

 Relational database management systems are the most widely used database management systems

today. They are relatively easy to use. Relational database management systems are named so because of

the characteristic of normalizing the data which is usually stored in tables. The relational model relies on

normalizing data within rows and columns in tables. The data can be related to other data in the same

table or other tables which has to be correctly managed by joining one or more tables. Relational models

may be somewhat less efficient than other models; however this may not be a problem with the processing

power and memory found in modern computers. Data in this type of model is stored is fixed predefined

structures and are usually manipulated using Structured Query Language (SQL). Relational database

management systems include Oracle, Ms SQLServer, IBM DB2, mySQL, SQLite and PostgreSQL among

others.

3.4.2 Flat File Based Database Management Systems

 Flat File based database management systems are probably the simplest of them all. These are

sometimes called Flat models. These come in human readable text formats as well as in binary formats.

These are ideal for stand alone applications, holding software configuration and native format storage

models. Flat files in a formatted row and column model rely on assumptions that every item in a particular

model consists of the same data. One common example of this type of database is the CSV (Comma

Separated Values) and another is a spreadsheet such as Ms Excel.

3.4.3 Hierarchical Database Management Systems

 Hierarchical database management systems operates on the parent child tree-like model. These

normally have a 1:N relationship and are good for storing data with items describing attributes, features

and so on. These could store a book with information on chapters and verses. They can also be used to

store a database of songs, recipes, models of phones and anything that can be stored in a nested format.

Hierarchical database management systems are not quite efficient for various real world operations. One

such example of a Hierarchical database management system is a XML document.

3.4.4 Network Database Management Systems

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 39 |

 A Network database management system uses a data model similar to Hierarchical database

management systems. The major difference here is that the tree structure in the Network models can have

a many parent to many child relational model. The Network model structure is based on records and sets

and most of these databases use SQL for manipulation of their data. Network database management

systems tend to be very flexible but are rarely used and was very quiet common in the1960s and 1970s.

Searching for an item in this model requires the program to traverse the entire data set which is quit

cumbersome. These have mainly been replaced by Relational database management systems in today's

modern computing.

3.4.5 Object-oriented Database Management Systems

 Object-oriented database management systems borrow from the model of the Object-oriented

programming paradigm. In this database model, the Object and its data or attributes are seen as one ad

accessed through pointers rather than stored in relational table models. Object-oriented database models

consist of diverse structures and is quite extensible. This data model was designed to work closely with

programs built with Object-oriented programming languages thereby almost making the data and the

program operate as one. With this model applications are able to treat the data as native code. There is

little commercial implementation of this database model as it is still developing. Examples of Object-

oriented database management systems include IBM DB4 and DTS/S1 from Obsidian Dynamics.

3.5 DBMS LANGUAGES AND INTERFACES

The DBMS must provide appropriate languages and interfaces for each category of users. In this section

we discuss the types of languages and interfaces provided by a DBMS andthe user categories targeted by

each interface.

3.5.1 DBMS Languages

 Once the design of a database is completed and a DBMS is chosen to implement thedatabase, the

first step is to specify conceptual and internal schemas for the database and any mappings between the

two. In many DBMSs where no strict separation oflevels is maintained, one language, called the data

definition language (DDL), isused by the DBA and by database designers to define both schemas. The

DBMS willhave a DDL compiler whose function is to process DDL statements in order to

identifydescriptions of the schema constructs and to store the schema description in theDBMS catalog.In

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 40 |

DBMSs where a clear separation is maintained between the conceptual and internallevels, the DDL is

used to specify the conceptual schema only.Another language,the storage definition language (SDL), is

used to specify the internal schema. Themappings between the two schemas may be specified in either

one of these languages. For a true three-schemaarchitecture, we would need a third language, the view

definition language (VDL),to specify user views and their mappings to the conceptual schema, but in

mostDBMSs the DDL is used to define both conceptual and external schemas Once the database schemas

are compiled and the database is populated with data,users must have some means to manipulate the

database. Typical manipulationsinclude retrieval, insertion, deletion, and modification of the data. The

DBMS providesa set of operations or a language called the data manipulation language (DML) for these

purposes. There are two main types of DMLs. A high-level or nonproceduralDML can beused on its own

to specify complex database operations concisely. Many DBMSsallow high-level DML statements either

to be entered interactively from a displaymonitor or terminal or to be embedded in a general-purpose

programming language.In the latter case, DML statements must be identified within the program sothat

they can be extracted by a precompile and processed by the DBMS. A low levelor proceduralDML must

be embedded in a general-purpose programminglanguage. This type of DML typically retrieves

individual records or objects fromthe database and processes each separately. Therefore, it needs to use

programming language constructs, such as looping, to retrieve and process each record from a setof

records. Whenever DML commands, whether high level or low level, are embedded in ageneral-purpose

programming language, that language is called the host language and the DML is called the data

sublanguage. On the other hand, a high-level DML used in a standalone interactive manner is called a

query language. In general,both retrieval and update commands of a high-level DML may be used

interactivelyand are hence considered part of the query language.

3.5.2 DBMS Interfaces

 User-friendly interfaces provided by a DBMS may include the following:

• Menu-Based Interfaces for Web Clients or Browsing. These interfaces present the user with

lists of options (called menus) that lead the user through the formulation of a request. Menus

do away with the need to memorize the specific commands and syntax of a query language;

rather, the query is composed step-by-step by picking options from a menu that is displayed

by the system. Pull-down menus are a very popular technique in Web-based user interfaces.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 41 |

They are also often used in browsing interfaces, which allow a user to look through the

contents of a database in an exploratory and unstructured manner.

• Forms-Based Interfaces. A forms-based interface displays a form to each user. Users can fill

out all of the formentries to insert new data, or they can fill out only certain entries, in which

case the DBMS will retrieve matching data for the remaining entries. Forms are usually

designed and programmed for naive users as interfaces to canned transactions. Many DBMSs

have forms specification languages.

• Graphical User Interfaces. A GUI typically displays a schema to the user in diagrammatic

form. The user then can specify a query by manipulating the diagram. In many cases, GUIs

utilize both menus and forms. Most GUIs use a pointing device, such as a mouse, to select

certain parts of the displayed schema diagram.

• Natural Language Interfaces. These interfaces accept requests written in English or some

other language and attempt to understand them. A natural language interface usually has its

own schema, which is similar to the database conceptual schema, as well as a dictionary of

important words.

• Speech Input and Output. Limited use of speech as an input query and speech as an answer

to a question or result of a request is becoming commonplace. Applications with limited

vocabularies such as inquiries for telephone directory, flight arrival/departure, and credit card

account information are allowing speech for input and output to enable customers to access

this information. The speech input is detected using a library of predefined words and used to

set up the parameters that are supplied to the queries. For output, a similar conversion from

text or numbers into speech takes place.

• Interfaces for Parametric Users. Parametric users, such as bank tellers, often have a small

set of operations that they must perform repeatedly. For example, a teller is able to use single

function keys to invoke routine and repetitive transactions such as account deposits or

withdrawals, or balance inquiries.

• Interfaces for the DBA. Most database systems contain privileged commands that can be

used only by the DBA staff. These include commands for creating accounts, setting system

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 42 |

parameters, granting account authorization, changing a schema, and reorganizing the storage

structures of a database.

3.6 CLIENT-SERVER MODEL & CENTRALIZED MODEL OF DBMS

Client-Server Model-

The Client-server model is a distributed application structure that partitions task or workload between the

providers of a resource or service, called servers, and service requesters called clients. In the client-server

architecture, when the client computer sends a request for data to the server through the internet, the server

accepts the requested process and deliver the data packets requested back to the client. Clients do not

share any of their resources. Examples of Client-Server Model are Email, World Wide Web, etc.

There are four main categories of client-server computing:

• One-Tier architecture: consists of a simple program running on a single computer without

requiring access to the network. User requests don’t manage any network protocols, therefore the

code is simple and the network is relieved of the extra traffic.

• Two-Tier architecture: consists of the client, the server, and the protocol that links the two tiers.

The Graphical User Interface code resides on the client host and the domain logic resides on the

server host. The client-server GUI is written in high-level languages such as C++ and Java.

• Three-Tier architecture: consists of a presentation tier, which is the User Interface layer, the

application tier, which is the service layer that performs detailed processing, and the data tier,

which consists of a database server that stores information.

• N-Tier architecture: divides an application into logical layers, which separate responsibilities and

manage dependencies, and physical tiers, which run on separate machines, improve scalability,

and add latency from the additional network communication. N-Tier architecture can be closed-

layer, in which a layer can only communicate with the next layer down, or open-layer, in which a

layer can communicate with any layers below it.

Here is a quick comparison between client-server and distributed system.

https://www.omnisci.com/technical-glossary/graphical-user-interface

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 43 |

Sr

No.
Client- Server Distributed DBMS

1. Client can access only one server at a

time.

User can access many sites

simultaneously.

2. It is difficult to manage. It is easy to manage.

3. In this data is distributed across clients. In this data is distributed across sites.

4. Speed of accessing database is poor as

compared to Distributed DBMS.

Speed of accessing database is much

better than Client/Server Architecture.

5. If somehow server crashes, the whole

system stops.

The crash of one site does not stop the

entire system.

6. Accessing of data is easy to control. Accessing of data is difficult to control.

7. It is less expensive as compared to

Distributed DBMS.

It is expensive.

8. Maintenance cost is low. Maintenance cost is high.

Centralized System-

A centralized database is stored at a single location such as a mainframe computer. It is maintained and

modified from that location only and usually accessed using an internet connection such as a LAN or

WAN. The centralized database is used by organizations such as colleges, companies, banks etc. As can

be seen from the figure 3.1, all the information for the organization is stored in a single database and

known as the centralized database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 44 |

Figure 3.1: Centralized Model

Advantages

Some advantages of Centralized Database Management System are −

• The data integrity is maximized as the whole database is stored at a single physical location.

This means that it is easier to coordinate the data and it is as accurate and consistent as possible.

• The data redundancy is minimal in the centralized database. All the data is stored together and

not scattered across different locations. So, it is easier to make sure there is no redundant data

available.

• Since all the data is in one place, there can be stronger security measures around it. So, the

centralized database is much more secure.

• Data is easily portable because it is stored at the same place.

• The centralized database is cheaper than other types of databases as it requires less power and

maintenance.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 45 |

• All the information in the centralized database can be easily accessed from the same location

and at the same time.

Disadvantages

Some disadvantages of Centralized Database Management System are −

• Since all the data is at one location, it takes more time to search and access it. If the network is

slow, this process takes even more time.

• There is a lot of data access traffic for the centralized database. This may create a bottleneck

situation.

• Since all the data is at the same location, if multiple users try to access it simultaneously it

creates a problem. This may reduce the efficiency of the system.

• If there are no database recovery measures in place and a system failure occurs, then all the data

in the database will be destroyed.

3.7 DATA DICTIONARY

A fundamental property of a database system is that it maintains a description ofall the data that it

contains. A relational DBMS maintains information about every relation and index that it contains. The

DBMS also maintains information about views, for which no tuples are stored explicitly; rather, a

definition of the view is stored and used to compute the tuples that belong in the view when the view is

queried. This information is stored in a collection of relations, maintained by the system, called the catalog

relations. The catalog relations are also called the system catalog, the catalog, or the data dictionary. The

system catalog is sometimes referred to as metadata; that is, not data, but descriptive information about

the data. The information in the system catalog is used extensively for query optimization. Many

organizations now use data dictionary systems or information repositories, which are mini DBMSs that

manage meta-data—that is, datathat describes the database structure, constraints, applications,

authorizations,users, and so on. These are often used as an integral tool for informationresource

management. A useful data dictionary system should store andmanage the following types of information:

a) Descriptions of the schemas of the database system.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 46 |

b) Detailed information on physical database design, such as storage structures, access paths, and

file and record sizes.

c) Descriptions of the types of database users, their responsibilities, and their access rights.

d) High-level descriptions of the database transactions and applications and of the relationships of

users to transactions.

e) The relationship between database transactions and the data items referenced by them. This is

useful in determining which transactions are affected when certain data definitions are changed.

f) Usage statistics such as frequencies of queries and transactions and access counts to different

portions of the database.

g) The history of any changes made to the database and applications, and documentation that describe

the reasons for these changes. This is sometimes referred to as data provenance. This meta-data is

available to DBAs, designers, and authorized users as online system documentation. This

improves the control of DBAs over the information system as well as the users’ understanding

and use of the system.

3.8CHECK YOUR PROGRESS

1. The database system which supports the majority of concurrent users is classified as _________.

2. The objects in DBMS belongs to same structure and behaves in the same way are considered as

_________.

3. The type of legacy data model in which data is represented as record types and limited one to

many relationships is called______.

4. The DBMS in which the system involved are coupled together while having local autonomy is

classified as ________.

5. The same class objects are arranged and organized in a way called______.

3.9 SUMMARY

Major benefits of Client-server model of DBMS

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 47 |

• A single server hosting all the required data in a single place facilitates easy protection of data and

management of user authorization and authentication.

• Resources such as network segments, servers, and computers can be added to a client-server

network without any significant interruptions.

• Data can be accessed efficiently without requiring clients and the server to be in close proximity.

• All nodes in the client-server system are independent, requesting data only from the server, which

facilitates easy upgrades, replacements, and relocation of the nodes.

• Data that is transferred through client-server protocols are platform-agnostic.

A Database can be in general defined as a collection of data that is organized efficiently so that the data

can be retrieved and stored easily. A Database which is located and stored in a single location is called a

Centralised Database. The centralized database’s location is generally a server CPU or desktop or the

mainframe computer which is accessed by the users through a computer network like LAN or WAN.

 An organization may have several business processes running for various departments

simultaneously. This may create issues if the organization wants to check on the data daily and the

centralized database comes in handy in such cases. It is important for an organization to take decisions

and without the presence of a centralized database, it becomes difficult. Because the organizations though

have separate databases for different departments, they still need to maintain a centralized database where

these separate databases are united to form a single database in order to provide the overall view of the

complete data. For example, if the organization wants to find the details about a particular employee, they

just need to access the centralized database to get all the details about the employee. So a centralized

database not only helps in getting the information quicker with more ease but also helps in taking the

business decisions as well. The usage of the Centralized Database ensures the security of the data, ease

of accessing data from one place as well as providing a complete view of the data effectively reducing

the extra layer of information.

There are several criteria based on which DBMS is classified. The classification and types of Database

Management System (DBMS) is explained in a detailed manner based on the different factors.

• Relational Database

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 48 |

• Object Oriented Database

• Object Relational Database

• Hierarchal Database

3.10 KEYWORDS

• Relational Databases-A relational database is a collection of data items with pre-defined

relationships between them. These items are organized as a set of tables with columns and rows.

Tables are used to hold information about the objects to be represented in the database.

• Object Oriented Databases-An object database is a database management system in which

information is represented in the form of objects as used in object-oriented programming. Object

databases are different from relational databases which are table-oriented. Object-

relational databases are a hybrid of both approaches.

• Network Databases-A network database is a type of database model wherein multiple member

records or files can be linked to multiple owner files and vice versa.

• Hierarchical Databases- In hierarchical model, data is organized into a tree like structure with

each record is having one parent record and many children. The main drawback of this model is

that, it can have only one to many relationships between nodes.

3.11SELF-ASSESSMENT TEST

1. What do you understand by data redundancy?

2. Discuss the classification of database in detail. Giving an example of each type.

3. What are the various type’s relationships in database? Define them.

4. Explain the data dictionary.

5. What is the importance of database management system interfaces?

6. How RDBMS stores its data?

3.12ANSWERS TO CHECK YOUR PROGRESS

1. Multiuser System

2. Same class objects

3. Network model

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 49 |

4. Federated DBMS

5. Acyclic graphs and hierarchies

3.13REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.tutorialspoint.com/Centralized-Database-Management-System

• https://www.omnisci.com/technical-glossary/client-server

• https://www.geeksforgeeks.org/difference-between-client-server-and-distributed-dbms/

https://www.tutorialspoint.com/Centralized-Database-Management-System
https://www.omnisci.com/technical-glossary/client-server

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 50 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 4 VETTER:

DATABASE SYSTEM ARCHITECTURE &DATA MODELS

STRUCTURE

4.0 Learning Objective

4.1 Introduction

4.2 Definition

4.3 Three Level of Architecture

4.3.1 Single Level

4.3.2 Two Level

4.3.3 Three Level

4.4 Phases of Database Design

4.5 Applications of DBMS

4.6 Data Modeling Concept

4.7 Object Data Model

4.8 Logical Data Model

4.9 Physical Data Model

4.10 Check Your Progress

4.11 Summary

4.12 Keywords

4.13 Self-Assessment Test

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 51 |

4.14 Answers to check your progress

4.15 References / Suggested Readings

4.0 LEARNING OBJECTIVE

6. The objective of this chapter is to make the reader understand the architecture details of database

management system, with three layer of architecture such as external, internal and conceptual. To

know the various applications of database and types of database and to provide detailed view of

the various data models that are available in DBMS.

4.1 INTRODUCTION

The design of a DBMS depends on its architecture. It can be centralized or decentralized or hierarchical.

The architecture of a DBMS can be seen as either single tier or multi-tier. An n-tier architecture divides

the whole system into related but independent n modules, which can be independently modified, altered,

changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the DBMS and

uses it. Any changes done here will directly be done on the DBMS itself. It does not provide handy tools

for end-users. Database designers and programmers normally prefer to use single-tier architecture.If the

architecture of DBMS is 2-tier, then it must have an application through which the DBMS can be

accessed. Programmers use 2-tier architecture where they access the DBMS by means of an application.

Here the application tier is entirely independent of the database in terms of operation, design, and

programming.

A 3-tier architecture as shown in figure 4.1 separates its tiers from each other based on the complexity

of the users and how they use the data present in the database. It is the most widely used architecture to

design a DBMS.Multiple-tier database architecture is highly modifiable, as almost all its components are

independent and can be changed independently.

• Database (Data) Tier −At this tier, the database resides along with its query processing

languages. We also have the relations that define the data and their constraints at this level.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 52 |

• Application (Middle) Tier −At this tier reside the application server and the programs that access

the database. For a user, this application tier presents an abstracted view of the database. End-

users are unaware of any existence of the database beyond the application. At the other end, the

database tier is not aware of any other user beyond the application tier. Hence, the application

layer sits in the middle and acts as a mediator between the end-user and the database.

• User (Presentation) Tier − End-users operate on this tier and they know nothing about any

existence of the database beyond this layer. At this layer, multiple views of the database can be

provided by the application. All views are generated by applications that reside in the application

tier

4.2 DEFINITION

Database architecture focuses on the design, development, implementation and maintenance of

computer programs that store and organize information for businesses, agencies and institutions. A

database architect develops and implements software to meet the needs of users. The design of a DBMS

depends on its architecture.

The DBMS design depends upon its architecture. The basic client/server architecture is used to deal

with a large number of PCs, web servers, database servers and other components that are connected with

networks. The client/server architecture consists of many PCs and a workstation which are connected via

the network.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 53 |

Figure 4.1: Outline of 3 tire architecture

A data model—a collection of concepts that can be used to describe the structure of a database—provides

the necessary means to achieve this abstraction. By structure of a database we mean the data types,

relationships, and constraints that apply to the data.Most data models also include a set of basic

operations for specifying retrievals and updates on the database.

4.3 THREE LEVEL OF ARCHITECTURE

4.3.1 Single Level-

In this type of architecture, the database is readily available on the client machine, any request made by

client doesn’t require a network connection to perform the action on the database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 54 |

For example, let’s say you want to fetch the records of employee from the database and the

database is available on your computer system, so the request to fetch employee details will be done by

your computer and the records will be fetched from the database by your computer as well. This type of

system is generally referred as local database system.

4.3.2 Two Level-

In two-tier architecture, the Database system is present at the server machine and the DBMS application

is present at the client machine, these two machines are connected with each other through a reliable

network as shown in the above diagram.

Whenever client machine makes a request to access the database present at server using a query

language like SQL, the server perform the request on the database and returns the result back to the

client. The application connection interface such as JDBC, ODBC are used for the interaction between

server and client.

4.3.3 Three Level-

DBMS uses three-tier architecture to help achieve and visualize the characteristics discussed previously.

The goal of the three-schema architecture, illustrated in Figure below, is to separate the user applications

from the physical database. In this architecture, schemas can be defined at the following three levels as

shown in figure 4.2:

1. The internal level has an internal schema, which describes the physical storage structure of the

database. The internal schema uses a physical data model and describes the complete details of

data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole database

for a community of users. The conceptual schema hides the details of physical storage structures

and concentrates on describing entities, data types, relationships, user operations, and constraints.

Usually, a representational data model is used to describe the conceptual schema when a database

system is implemented. This implementation conceptual schema is often based on a conceptual

schema design in a high-level data model.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 55 |

3. The external or view level includes a number of external schemas or user views. Each external

schema describes the part of the database that a particular user group is interested in and hides the

rest of the database from that user group. As in the previous level, each external schema is typically

implemented using a representational data model, possibly based on an external schema design in

a high-level data model.

External Level ……………………………….

External/Conceptual Mapping

Conceptual Level

Conceptual/Internal Mapping

Internal Level

 Stored Databases

Figure 4.2: Three-Level Schema Architecture

Conceptual Schema

Internal Schema

External

view

External

view

External

view

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 56 |

Different Mappings in Three level Architecture of DBMS

The process of transforming requests and results between the three levels are called mappings. The

database management system is responsible for this mapping between internal, external and conceptual

schemas.

There are two types of mappings:

1. Conceptual/Internal mapping.

2. The External/Conceptual mapping.

1. The Conceptual/Internal Mapping: This mapping defines the correspondence or operations between

the conceptual view and the physical view. It specifies how the data isretrieved from physical storage and

shown at conceptual level and vice-versa. It specifies how conceptual records and fields are represented

at the internal level. It also allows any differences in entity names, attribute names and their orders, data

types etc., to be resolved.

2. The External/Conceptual Mapping: This mapping defines the correspondence between the conceptual

view and the physical view. It specifies how the data is retrieved from conceptual level and shown at

external level because at external level some part of database is hidden from a particular user and even

names of data fields are changed etc. There could be one mapping between conceptual and internal level

and several mappings between external and conceptual level. The physical data independence is achieved

through conceptual/internal mapping while the logical data independence is achieved through external/

conceptual mapping. The information about the mapping requests among various schema levels are

included in the system catalog of DBMS. When schema is changed at some level, the schema at the next

higher level remains unchanged, only the mapping between the two levels is changed.

4.4 PHASES OF DATABASE DESIGN

Database designing for a real-world application starts from capturing the requirements to physical

implementation using DBMS software which consists of following steps shown below in figure 5.3:

Conceptual Design: The requirements of database are captured using high level conceptual data model.

For Example, the ER model is used for the conceptual design of the database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 57 |

Logical Design: Logical Design represents data in the form of relational model. ER diagram produced in

the conceptual design phase is used to convert the data into the Relational Model.

Physical Design: In physical design, data in relational model is implemented using commercial DBMS

like Oracle, DB2.

Figure 4.3: Phases of Database Design

4.5 APPLICATIONS OF DBMS

Database is a collection of related data and data is a collection of facts and figures that can be processed

to produce information.Mostly data represents recordable facts. Data aids in producing information,

which is based on facts. For example, if we have data about marks obtained by all students, we can then

conclude about toppers and average marks. A database management system stores data in such a way that

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 58 |

it becomes easier to retrieve, manipulate, and produce information. Following are the important

characteristics and applications of DBMS.

• ACID Properties − DBMS follows the concepts of Atomicity, Consistency, Isolation, and

Durability (normally shortened as ACID). These concepts are applied on transactions, which

manipulate data in a database. ACID properties help the database stay healthy in multi-

transactional environments and in case of failure.

• Multiuser and Concurrent Access − DBMS supports multi-user environment and allows them

to access and manipulate data in parallel. Though there are restrictions on transactions when

users attempt to handle the same data item, but users are always unaware of them.

• Multiple views − DBMS offers multiple views for different users. A user who is in the Sales

department will have a different view of database than a person working in the Production

department. This feature enables the users to have a concentrate view of the database according

to their requirements.

• Security − Features like multiple views offer security to some extent where users are unable

to access data of other users and departments. DBMS offers methods to impose constraints

while entering data into the database and retrieving the same at a later stage. DBMS offers

many different levels of security features, which enables multiple users to have different views

with different features. For example, a user in the Sales department cannot see the data that

belongs to the Purchase department. Additionally, it can also be managed how much data of

the Sales department should be displayed to the user. Since a DBMS is not saved on the disk

as traditional file systems, it is very hard for miscreants to break the code.

5.6 DATA MODELING CONCEPT

Implementation data models that are closer to conceptual data models. A standard for object

databases called the ODMG object model has been proposed by the Object Data Management Group

Physical data models describe how data is stored as files in the computer by representing

Information such as record formats, record orderings, and access paths. An access path is a

structure that makes the search for particular database records efficient. An index is an example of an

access path that allows direct access to data using an index term or a keyword. It is similar to the index at

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 59 |

the end of this book, except that it may be organized in a linear, hierarchical (tree-structured), or some

other fashion

A data model organizes data(link is external) elements and standardizes how the data elements

relate to one another. Since data elements document real life(link is external) people, places and things

and the events between them, the data model represents reality. For example a house has many windows

or a cat has two eyes. Data models are often used as an aid to communication between the business people

defining the requirements(link is external) for a computer system(link is external) and the technical people

defining the design in response to those requirements. They are used to show the data needed and created

by business processes(link is external).A data model explicitly determines the structure of data. Data

models are specified in a data modeling(link is external) notation, which is often graphical in form. (Link

is external)

A data model can be sometimes referred to as a data structure(link is external), especially in the

context of programming languages(link is external). Data models are often complemented by function

models (link is external).

The primary goal of using data model are:

• Ensures that all data objects required by the database are accurately represented. Omission of data

will lead to creation of faulty reports and produce incorrect results.

• A data model helps design the database at the conceptual, physical and logical levels.

• Data Model structure helps to define the relational tables, primary and foreign keys and stored

procedures.

• It provides a clear picture of the base data and can be used by database developers to create a

physical database.

• It is also helpful to identify missing and redundant data.

• Though the initial creation of data model is labor and time consuming, in the long run, it makes

your IT infrastructure upgrade and maintenance cheaper and faster.

Types of Data Model:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 60 |

There are mainly three different types of data models: conceptual data models, logical data models, and

physical data models, and each one has a specific purpose. The data models are used to represent the data

and how it is stored in the database and to set the relationship between data items.

1. Conceptual or Object Data Model: This Data Model defines WHAT the system contains. This

model is typically created by Business stakeholders and Data Architects. The purpose is to

organize, scope and define business concepts and rules.

2. Logical Data Model: Defines HOW the system should be implemented regardless of the DBMS.

This model is typically created by Data Architects and Business Analysts. The purpose is to

developed technical map of rules and data structures.

3. Physical Data Model: This Data Model describes HOW the system will be implemented using a

specific DBMS system. This model is typically created by DBA and developers. The purpose is

actual implementation of the database.

4.7 OBJECT BASED DATA MODEL

This data model is another method of representing real world objects. It considers each object in the world

as objects and isolates it from each other. It groups its related functionalities together and allows inheriting

its functionality to other related sub-groups. Let us consider an Employee database to understand this

model better. In this database we have different types of employees – Engineer, Accountant, Manager,

Clark. But all these employees belong to Person group. Person can have different attributes like name,

address, age and phone. What do we do if we want to get a person’s address and phone number? We write

two separate procedure sp_getAddress and sp_getPhone.

What about all the employees above? They too have all the attributes what a person has. In

addition, they have their EMPLOYEE_ID, EMPLOYEE_TYPE and DEPARTMENT_ID attributes to

identify them in the organization and their department. We have to retrieve their department details, and

hence we sp_getDeptDetails procedure. Currently, say we need to have only these attributes and

functionality.Since all employees inherit the attributes and functionalities of Person, we can re-use those

features in Employee. But do we do that? We group the features of person together into class. Hence a

class has all the attributes and functionalities. For example, we would create a person class and it will

have name, address, age and phone as its attribute, and sp_getAddress and sp_getPhone as procedures in

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 61 |

it. The values for these attributes at any instance of time are object. i.e.; {John, Troy, 25, 2453545 :

sp_getAddress (John), sp_getPhone (John)} forms on person object. {Mathew, Fraser Town, 28,

5645677: sp_getAddress (Mathew), sp_getPhone (Mathew} forms another person object.

Now, we will create another class called Employee which will inherit all the functionalities of Person

class. In addition it will have attributes EMPLOYEE_ID, EMPLOYEE_TYPE and DEPARTMENT_ID,

and sp_getDeptDetails procedure. Different objects of Employee class are Engineer, Accountant,

Manager and Clerk.

Figure 4.4: Object Data Model Example

Here in the figure 4.4 we can observe that the features of Person are available only if other class is

inherited from it. It would be a black box to any other classes. This feature of this model is called

encapsulation. It binds the features in one class and hides it from other classes. It is only visible to its

objects and any inherited classes.

4.8 PHYSICAL DATA MODEL

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 62 |

A Physical Data Model describes a database-specific implementation of the data model. It offers

database abstraction and helps generate the schema. This is because of the richness of meta-data offered

by a Physical Data Model. The physical data model also helps in visualizing database structure by

replicating database column keys, constraints, indexes, triggers, and other RDBMS features as shown in

figure 4.5.

Figure 4.5: Physical data model example

Main Characteristics of a physical data model:

• The physical data model describes data need for a single project or application though it may be

integrated with other physical data models based on project scope.

• Data Model contains relationships between tables that which addresses cardinality and null ability

of the relationships.

• Developed for a specific version of a DBMS, location, data storage or technology to be used in

the project.

• Columns should have exact datatypes, lengths assigned and default values.

• Primary and Foreign keys, views, indexes, access profiles, and authorizations, etc. are defined.

4.9 LOGICAL DATA MODEL

The Logical Data Model is used to define the structure of data elements and to set relationships between

them. The logical data model adds further information to the conceptual data model elements. The

advantage of using a Logical data model is to provide a foundation to form the base for the Physical

model. However, the modeling structure remains generic as shown in figure 4.6.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 63 |

Figure 4.6: Logical data model example

4.10CHECK YOUR PROGRESS

1. The level of data abstraction which describes how the data is actually stored is _____________.

2. Collection of information stored in a database at a particular moment is __________.

3. In a hierarchical database, a hashing function is used to locate the ____________.

4. The syntax of a user query is verified by ___________.

5. The application server in a three-tier architecture, communicates with a database system to access

________.

4.11 SUMMARY

The three levels or views are discussed below:

(i) Internal Level: Internal level describes the actual physical storage of data or the way in which the

data is actually stored in memory. This level is not relational because data is stored according to various

coding schemes instead of tabular form (in tables). This is thelow level representation of entire database.

The internal view is described by means of an internal schema. The internal level is concerned with the

following aspects:

– Storage space allocation

– Access paths

– Data compression and encryption techniques

– Record placement etc.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 64 |

The internal level provides coverage to the data structures and file organizations used to store data on

storage devices.

(ii) Conceptual Level: The conceptual level is also known as logical level which describes the overall

logical structure of whole database for a community of users. This level is relational because data visible

at this level will be relational tables and operators will be relational operators. This level represents entire

contents of the database in an abstract form in comparison with physical level. Here conceptual schema

is defined which hides the actual physical storage and concentrate on relational model of database.

(iii) External Level: The external level is concerned with individual users. This level describes the actual

view of data seen by individual users. The external schema is defined by the DBA for every user. The

remaining part of database is hidden from that user. This means user can only access data of its own

interest. In other words, user can access only that part of database for which he is authorized by DBA.

This level is also relational or very close to it.

4.12 KEYWORDS

• CONCURRENCY CONTROL - Concurrency control is the procedure in DBMS for managing

simultaneous operations without conflicting with each another. Concurrent access is quite easy if

all users are just reading data.

• ACID- The presence of four components — atomicity, consistency, isolation and durability —

can ensure that a database transaction is completed in a timely manner. When databases possess

these components, they are said to be ACID-compliant.

• DATA ARCHITECT- Data architects define how the data will be stored, consumed, integrated

and managed by different data entities and IT systems, as well as any applications using or

processing that data in some way.

• SCHEMA- The term "schema" refers to the organization of data as a blueprint of how the database

is constructed (divided into database tables in the case of relational databases). The formal

definition of a database schema is a set of formulas (sentences) called integrity constraints

imposed on a database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 65 |

• INSTANCE- A database instance is a set of memory structures that manage database files. A

database is a set of physical files on disk created by the CREATE DATABASE statement. The

instance manages its associated data and serves the users of the database.

4.13SELF-ASSESSMENT TEST

1. Explain the interfaces used for DBMS. Also discuss any special type of hardware/software

requirements for using these interfaces?

2. How many types of architectures are there when we talk about databases?

3. What is n-types of DBMS architecture?

4. Discuss different types of applications of database systems.

5. Write short note the phases of database design.

4.14ANSWERS TO CHECK YOUR PROGRESS

1. Physical level

2. Instance

3. Root

4. Parser

5. Data

4.15REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.geeksforgeeks.org/introduction-of-3-tier-architecture-in-dbms-set-2/

• https://beginnersbook.com/2018/11/dbms-architecture/

• https://medium.com/oceanize-geeks/concepts-of-database-architecture-dfdc558a93e4

• https://www.tutorialspoint.com/dbms/index.htm

https://www.geeksforgeeks.org/introduction-of-3-tier-architecture-in-dbms-set-2/
https://beginnersbook.com/2018/11/dbms-architecture/
https://medium.com/oceanize-geeks/concepts-of-database-architecture-dfdc558a93e4
https://www.tutorialspoint.com/dbms/index.htm

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 66 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 5 VETTER:

SCHEMAS AND DATA INDEPENDENCE

STRUCTURE

5.0 Learning Objective

5.1 Introduction

5.2 Definition

5.3 Schemas

5.4 Mapping and Instances

5.5 Data Independence

5.5.1 Logical Data Independence

5.5.2 Physical Data Independence

5.6 Check Your Progress

5.7 Summary

5.8 Keywords

5.9 Self-Assessment Test

5.10 Answers to check your progress

5.11 References / Suggested Readings

5.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the DBMS schemas and how

mapping of instances is done. To know the data independence in detail. To study types of data

independence in databases.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 67 |

5.1 INTRODUCTION

In the chapter we will firstly focus on the data Independence is defined as a property of DBMS that helps

you to change the Database schema at one level of a database system without requiring to change the

schema at the next higher level. Data independence helps you to keep data separated from all programs

that make use of it. You can use this stored data for computing and presentation. In many systems, data

independence is an essential function for components of the system.Database systems comprise of

complex data structures. Thus, to make the system efficient for retrieval of data and reduce the complexity

of the users, developers use the method of Data Abstraction.

There are mainly three levels of data abstraction:

1. Internal Level: Actual PHYSICAL storage structure and access paths.

2. Conceptual or Logical Level: Structure and constraints for the entire database

3. External or View level: Describes various user views

The term "database schema" can refer to a visual representation of a database, a set of rules that govern a

database, or to the entire set of objects belonging to a particular user.A database schema represents the

logical configuration of all or part of a relational database. It can exist both as a visual representation and

as a set of formulas known as integrity constraints that govern a database. These formulas are expressed

in a data definition language, such as SQL. As part of a data dictionary, a database schema indicates how

the entities that make up the database relate to one another, including tables, views, stored procedures,

and more.

 Typically, a database designer creates a database schema to help programmers whose software

will interact with the database. The process of creating a database schema is called data modelling. When

following the three-schema approach to database design, this step would follow the creation of a

conceptual schema. Conceptual schemas focus on an organization’s informational needs rather than the

structure of a database.

There are two main kinds of database schema:

• A logical database schema conveys the logical constraints that apply to the stored data. It may

define integrity constraints, views, and tables.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 68 |

• A physical database schema lays out how data is stored physically on a storage system in terms

of files and indices.

5.2 DEFINITION

Data Independence- Data Independence is defined as a property of DBMS that helps you to change the

Database schema at one level of a database system without requiring to change the schema at the next

higher level. Data independence helps you to keep data separated from all programs that make use of it.

Schema-The term "schema" refers to the organization of data as a blueprint of how the database is

constructed (divided into database tables in the case of relational databases). The formal definition of a

database schema is a set of formulas (sentences) called integrity constraints imposed on a database.

Sub schema-The subschema is the logical description of that section of the database which is relevant

and available to an application. A subschema can, of course, be common to two or more different

applications.

Instances-A database instance is a set of memory structures that manage database files. A database is a

set of physical files on disk created by the CREATE DATABASE statement. The instance manages its

associated data and serves the users of the database.

5.3 SCHEMAS

A database schema is the skeleton structure that represents the logical view of the entire database. It

defines how the data is organized and how the relations among them are associated. It formulates all the

constraints that are to be applied on the data.

A database schema as shown in figure 5.1 defines its entities and the relationship among them. It contains

a descriptive detail of the database, which can be depicted by means of schema diagrams. It’s the database

designers who design the schema to help programmers understand the database and make it useful.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 69 |

Figure 5.1: Schemas in DBMS

Design of database at logical level is called logical schema, programmers and database administrators

work at this level, at this level data can be described as certain types of data records gets stored in data

structures, however the internal details such as implementation of data structure is hidden at this level

(available at physical level).

Design of database at view level is called view schema. This generally describes end user interaction with

database systems.

A database schema can be divided broadly into two categories −

1. Physical Database Schema − this schema pertains to the actual storage of data and its form of

storage like files, indices, etc. It defines how the data will be stored in a secondary storage.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 70 |

2. Logical Database Schema − this schema defines all the logical constraints that need to be applied

on the data stored. It defines tables, views, and integrity constraints.

5.4 MAPPING AND INSTANCES

Mapping- Process of transforming request and results between three levels it's called mapping. There are

the two types of mappings:

1. Conceptual/Internal Mapping

2. External/Conceptual Mapping

1. Conceptual/Internal Mapping:

• The conceptual/internal mapping defines the correspondence between the conceptual view and

the store database.

• It specifies how conceptual record and fields are represented at the internal level.

• It relates conceptual schema with internal schema.

• If structure of the store database is changed.

• If changed is made to the storage structure definition-then the conceptual/internal mapping must

be changed accordingly, so that the conceptual schema can remain invariant.

• There could be one mapping between conceptual and internal levels.

2. External/Conceptual Mapping:

• The external/conceptual mapping defines the correspondence between a particular external view

and conceptual view.

• It relates each external schema with conceptual schema.

• The differences that can exist between these two levels are analogous to those that can exist

between the conceptual view and the stored database.

• Example: fields can have different data types; fields and record name can be changed; several

conceptual fields can be combined into a single external field.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 71 |

• Any number of external views can exist at the same time; any number of users can share a given

external view: different external views can overlap.

• There could be several mapping between external and conceptual levels.

Database Instance- It is important that we distinguish these two terms individually. Database schema is

the skeleton of database. It is designed when the database doesn't exist at all. Once the database is

operational, it is very difficult to make any changes to it. A database schema does not contain any data or

information. A database instance is a state of operational database with data at any given time. It contains

a snapshot of the database. Database instances tend to change with time. A DBMS ensures that its every

instance (state) is in a valid state, by diligently following all the validations, constraints, and conditions

that the database designers have imposed.

 The data stored in database at a particular moment of time is called instance of database. Database

schema defines the variable declarations in tables that belong to a particular database; the value of these

variables at a moment of time is called the instance of that database.

For example, let’s say we have a single table student in the database, today the table has 100 records, and

so today the instance of the database has 100 records. Let’s say we are going to add another 100 records

in this table by tomorrow so the instance of database tomorrow will have 200 records in table. In short, at

a particular moment the data stored in database is called the instance that changes over time when we add

or delete data from the database.

Key Difference between schemas and instances-

Schemas Instances

It is the overall description of the database. It is the collection of information stored

in a database at a particular moment.

Schema is same for whole database. Data in instances can be changed using

addition, deletion, updation.

Does not change Frequently. Changes Frequently.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 72 |

Defines the basic structure of the database i.e

how the data will be stored in the database.

It is the set of Information stored at a

particular time.

5.5 DATA INDEPENDENCE

A database system normally contains a lot of data in addition to users’ data. For example, it stores data

about data, known as metadata, to locate and retrieve data easily. It is rather difficult to modify or update

a set of metadata once it is stored in the database. But as a DBMS expands, it needs to change over time

to satisfy the requirements of the users. If the entire data is dependent, it would become a tedious and

highly complex job as shown in figure 5.2.

Figure 5.2: Data Independence

In DBMS there are two types of data independence

• Physical data independence

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 73 |

• Logical data independence.

5.5.1 LOGICAL DATA INDEPENDENCE

Physical Data Independence is defined as the ability to make changes in the structure of the lowest level

of the Database Management System (DBMS) without affecting the higher-level schemas. Hence,

modification in the Physical level should not result in any changes in the Logical or View levels.Logical

data is data about database, that is, it stores information about how data is managed inside. For example,

a table (relation) stored in the database and all its constraints, applied on that relation. Logical data

independence is a kind of mechanism, which liberalizes itself from actual data stored on the disk see

figure 6.3. If we do some changes on table format, it should not change the data residing on the disk.

Figure 5.3: Data Independence abstract view

Example –

Changes in the lowest level (physical level) are: creating a new file, storing the new files in the system,

creating a new index etc.

Instances of why we may want to do any sort of Data modification in the physical level- We may want

to alter or change the data in the physical level. This is because we may want to add or remove files and

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 74 |

indexes to enhance the performance of the database system and make it faster. Hence, in this way, the

Physical Data Independence enables us to do Performance Tuning. Ideally, when we change the

physical level, we would not want to alter the logical and view level.

How is Physical Data Independence achieved?

Physical Data Independence is achieved by modifying the physical layer to logical layer mapping (PL-

LL mapping). We must ensure that the modification we have done is localized.

5.5.2 PHYSICAL DATA INDEPENDENCE

All the schemas are logical, and the actual data is stored in bit format on the disk. Physical data

independence is the power to change the physical data without impacting the schema or logical data.For

example, in case we want to change or upgrade the storage system itself − suppose we want to replace

hard-disks with SSD − it should not have any impact on the logical data or schemas. Logical Data

Independence can also be defined as the ability to make changes in the structure of the middle level of

the Database Management System (DBMS) without affecting the highest-level schema or application

programs. Hence, modification in the logical level should not result in any changes in the view levels or

application programs.

Example –

Changes in the lowest level (physical level) are: adding new attributes to a relation, deleting existing

attributes of the relation etc. Ideally, we would not want to change any application or programs that do

not require to use the modified attribute.

How is Logical Data Independence achieved?

Logical Data Independence is achieved by modifying the view layer to logical layer mapping (VL-LL

mapping)

5.6 CHECK YOUR PROGRESS

1. Which of the following is not a schema?

a. Database Schema

b. Physical Schema

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 75 |

c. Critical Schema

d. Logical Schema

2. Logical Design of database is called _____________

3. Snapshot of the DTA in the database at a given instant of time is called _________.

4. Which of the following is the structure of the database?

a. Table

b. Schema

c. Relation

d. None of these

5. A logical description of some portion of database that is required by a user to perform task is

called as_________.

5.7 SUMMARY

The plans of the database and data stored in the database are most important for anorganization, since

database is designed to provide information to the organization. The datastored in the database changes

regularly but the plans remain static for longer periods of time. A schema is plan of the database that give

the names of the entities and attributes and the relationship among them. A schema includes the definition

of the database name, the record type and the components that make up the records. Alternatively, it is

defined as a frame-work into which the values of the data items are fitted. The values fitted into the frame-

work changes regularly but the format of schema remains the same e.g., consider the database consisting

of three files ITEM, CUSTOMER and SALES. Generally, a schema can be partitioned into two

categories, i.e., (i) Logical schema and (ii) Physical schema.

(i) The logical schema is concerned with exploiting the data structures offered by the

DBMS so that the schema becomes understandable to the computer. It is important as programs use it to

construct applications.

(ii) The physical schema is concerned with the manner in which the conceptual database get represented

in the computer as a stored database. It is hidden behind the logical schema and can usually be modified

without affecting the application programs.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 76 |

The DBMS’s provide DDL and DSDL to specify both the logical and physical schema.When we talk

about database we need to know about subschemas. A subschema is a subset of the schema having the

same properties that a schema has. It identifies a subset of areas, sets, records, and data names defined in

the database schema available to user sessions. The subschema allows the user to view only that part of

the database that is of interest to him. The subschema defines the portion of the database as seen by the

application programs and the application programs can have different view of data stored in the database.

The different application programs can change their respective subschema without affecting other’s

subschema or view. The Subschema Definition Language (SDL) is used to specify a subschema in the

DBMS.Whereas the data in the database at a particular moment of time is called an instance or a

databasestate. In a given instance, each schema construct has its own current set of instances.

Manyinstances or database states can be constructed to correspond to a particular database schema. Every

time we update (i.e., insert, delete or modify) the value of a data item in a record, one state of the database

changes into another state.

Data independence can be explained using the three-schema architecture.Data independence refers

characteristic of being able to modify the schema at one level of the database system without altering the

schema at the next higher level.There are two types of data independence:

• Logical Data Independence

• Physical Data Independence

5.8 KEYWORDS

• Domain

• View- Any set of tuples; a data report from the RDBMS in response to a query

5.9 SELF-ASSESSMENT TEST

1. What do you understand by data independence? What are its two types?

2. Define the relationship between view and data independence?

3. What is the role of Schema in databases?

4. What are the advantages and disadvantages of view in the databases?

5. Is there any other types of data independence other than logical and physical data independence?

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 77 |

5.10 ANSWERS TO CHECK YOUR PROGRESS

1. Critical Schema

2. Database Schema

3. Database Instance

4. Schema

5. User View

5.11 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.geeksforgeeks.org/physical-and-logical-data-independence/

• https://mcqslearn.com/cs/dbms/data-models-categories-multiple-choice-questions.php

• https://tutorialink.com/dbms/data-independence.dbms

• https://beginnersbook.com/2015/04/instance-and-schema-in-dbms/

https://www.geeksforgeeks.org/physical-and-logical-data-independence/
https://mcqslearn.com/cs/dbms/data-models-categories-multiple-choice-questions.php
https://tutorialink.com/dbms/data-independence.dbms
https://beginnersbook.com/2015/04/instance-and-schema-in-dbms/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 78 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 6 VETTER:

ENTITY-RELATION MODEL AND RELATIONSHIPS

STRUCTURE

6.0 Learning Objective

6.1 Introduction

6.2 Definition

6.3 Entity Relation Model

6.4 Entity Relation Diagrams

6.5 Check Your Progress

6.6 Summary

6.7 Keywords

6.8 Self-Assessment Test

6.8 Answers to check your progress

6.9 References / Suggested Readings

6.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the meaning, and concept of

entity relation model in database management system, to know what are entities, attributes,

entity sets and relationship instances as well in detail.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 79 |

6.1 INTRODUCTION

ER model is represents real world situations using concepts, which are commonly usedby people. It

allows defining a representation of the real world at logical level.ER modelhas no facilities to describe

machine-related aspects.

In ER model the logical structure of data is captured by indicating the grouping of data into

entities. The ER model also supports a top-down approach by which details can be given in successive

stages.

A relationship, in the context of databases, is a situation that exists between two relational database tables

when one table has a foreign key that references the primary key of the other table. Relationships allow

relational databases to split and store data in different tables, while linking disparate data items.For

example, in a bank database a CUSTOMER_MASTER table stores customer data with a primary key

column named CUSTOMER_ID; it also stores customer data in an ACCOUNTS_MASTER table, which

holds information about various bank accounts and associated customers. To link these two tables and

determine customer and bank account information, a corresponding CUSTOMER_ID column must be

inserted in the ACCOUNTS_MASTER table, referencing existing customer IDs from the

CUSTOMER_MASTER table. In this case, the ACCOUNTS_MASTER table’s CUSTOMER_ID

column is a foreign key that references a column with the same name in the CUSTOMER_MASTER

table. This is an example of a relationship between the two tables.

The fundamental feature that differentiates relational databases from other database types (e.g., flat-files)

is the ability to define relationships.

• One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in the first table is related to

only one record in the second table, and a single record in the second table is related to only one

record in the first table. This can be shown as in figure 6.1.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 80 |

Figure 6.1: One to one relationship

• One to Many relationship

One-to-Many relationship in DBMS is a relationship between instances of an entity with more

than one instance of another entity.

The relation can be shown in figure 6.2 –

Figure 6.2: One to Many Relationship

• Many to Many relationship

A pair of tables bears a many-to-many relationship when a single record in the first table can be

related to one or more records in the second table and a single record in the second table can be

related to one or more records in the first table.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 81 |

Figure 6.3: Many to Many Relationship

Assume once again that you're working with TABLE A and TABLE B and that there is a many-to-many

relationship between them. Because of the relationship, a single record in TABLE A can be related to

one or more records (but not necessarily all) in TABLE B. Conversely, a single record in the TABLE B

can be related to one or more records (but not necessarily all) in TABLE A. Figure 6.3 shows the

relationship from the perspective of each table.

6.2 DEFINITION

Entity- An entity can be a real-world object, either animate or inanimate, that can be easily identifiable.

For example, in a school database, students, teachers, classes, and courses offered can be considered as

entities. All these entities have some attributes or properties that give them their identity.

An entity set is a collection of similar types of entities. An entity set may contain entities with

attribute sharing similar values. For example, a Students set may contain all the students of a school;

likewise a Teachers set may contain all the teachers of a school from all faculties. Entity sets need not be

disjoint.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 82 |

Attributes- Entities are represented by means of their properties, called attributes. All attributes have

values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example, a student's name

cannot be a numeric value. It has to be alphabetic. A student's age cannot be negative, etc.

Entity Set and Keys-Key is an attribute or collection of attributes that uniquely identifies an entity

among entity set.

For example, the roll_number of a student makes him/her identifiable among students.

• Super Key − A set of attributes (one or more) that collectively identifies an entity in an entity

set.

• Candidate Key − A minimal super key is called a candidate key. An entity set may have more

than one candidate key.

• Primary Key − A primary key is one of the candidate keys chosen by the database designer to

uniquely identify the entity set.

Relationships- The association among entities is called a relationship. For example, an

employee works_at a department, a student enrolls in a course. Here, Works_at and Enrolls are called

relationships.

Database Relationship- Database relationships are associations between tables that are created using

join statements to retrieve data. ... Both tables can have only one record on each side of the relationship.

Each primary key value relates to none or only one record in the related table.

6.3 ENTITY-RELATIONSHIP MODEL

The entity-relationship (ER) data model allows us to describe the data involved in a real-world enterprise

in terms of objects and their relationships and is widely used to develop an initial database design. The

ER model is important primarily for its role in database design. It provides useful concepts that allow us

to move from an informal description of what users want fromtheir database to a more detailed, and

precise description that can be implemented in a DBMS.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 83 |

Entities, Attributes and Entity sets

 An entity is an object in the real world that is distinguishable from other objects. Examples include

the following: the Green Dragonzord toy, the toy department, the manager of the toy department, the

home address of the manager of the toy department. It is often useful to identify a collection of similar

entities. Such a collection is called an entity set. Note that entity sets need not be disjoint; the collection

of toy department employees and the collection of appliance department employees may both contain

employee Jai Parkash (who happens to work in both departments). We could also define an entity set

called Employees that contains both the toy and appliance department employee sets.

 An entity is described using a set of attributes. All entities in a given entity set have the same

attributes; this is essentially what we mean by similar. Our choice of attributes reflects the level of detail

at which we wish to represent information about entities. For example, the Employees entity set could

use name, Adhar number (Adhar_No.), and parking lot (lot) as attributes. In this case we will store the

name, social security number, and lot number for each employee. However, we will not store, say, an

employee's address (or gender or age). For each attribute associated with an entity set, we must identify

a domain of possible values. For example, the domain associated with the attribute name of Employees

might be the set of 20-character strings. As another example, if the company rates employees on a scale

of 1 to 10 and stores ratings in a field called rating, the associated domain consists of integers 1 through

10. In some cases, a particular entity may not have an applicable value for an attribute. For example, the

Apartment_number attribute of an address applies only to addresses that are in apartment buildings and

not to other types of residences, such as single-family homes. Similarly, a College_degrees attribute

applies only to people with college degrees. For such situations, a special value called NULL is created.

For each entity set, we choose a key. Akey is a minimal set of attributes whose values uniquely identify

an entity in the set. There could be more than one candidate key; if so, we designate one of them as the

primary key. For now we will assume that each entity set contains at least one set of attributes that

uniquely identifies an entity in the entity set; that is, the set of attributes contains a key. The following

figure shows an Employee Entity with its attributes:

 Name Lot No. SSN

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 84 |

Figure 6.4 The Employee Entity Set

 As shown in the figure 6.4 an entity set is represented by a rectangle, and an attribute is represented

by an oval. Each attribute in the primary key is underlined. The domain information could be listed along

with the attribute name, but we omit this to keep the figures compact. The key is Adhar_No.. Several

types of attributes occur in the ER model: simple versus composite, singlevalued versus multivalued, and

stored versus derived. First we define these attribute types and illustrate their use via examples

• Composite versus Simple (Atomic) Attributes. Composite attributes can be divided into

smaller subparts, which represent more basic attributes with independent meanings. For example,

the Address attribute of the EMPLOYEE entity can be subdivided into Street_address, City, State,

and Zip with the values ‘KirtiNaragr’, ‘Sirsa’, ‘Haryana’, and ‘125055.’ Attributes that are not

divisible are called simple or atomic attributes. Composite attributes can form a hierarchy; for

example, Street_address can be further subdivided into three simple component attributes:

Number, Street, and Apartment_number. The value of a composite attribute is the concatenation

of the values of its component simple attributes.

• Single-Valued versus Multivalued Attributes. Most attributes have a single value for a

particular entity; such attributes are called single-valued. For example, Age is a single-valued

attribute of a person. In some cases an attribute can have a set of values for the same entity—for

instance, a Colors attribute for a car, or a College_degrees attribute for a person. Cars with one

color have a single value, whereas two-tone cars have two color values. Similarly, one person may

not have a college degree, another person may have one, and a third person may have two or more

degrees; therefore, different people can have different numbers of values for the College_degrees

attribute. Such attributes are called multivalued.

• Stored versus Derived Attributes. In some cases, two (or more) attribute values are related—for

example, the Age and Birth_date attributes of a person. For a particular person entity, the value of

Age can be determined from the current (today’s) date and the value of that person’s Birth_date.

Employee

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 85 |

The Age attribute is hence called a derived attribute and is said to be derivable from the Birth_date

attribute, which is called a stored attribute. Some attribute values can be derived from related

entities; for example, an attribute Number_of_employees of a DEPARTMENT entity can be

derived by counting the number of employees related to (working for) that department.

• Complex Attributes. Notice that, in general, composite and multivalued attributes can be nested

arbitrarily.We can represent arbitrary nesting by grouping components of a composite attribute

between parentheses () and separating the components with commas, and by displaying

multivalued attributes between braces { }. Such attributes are called complex attributes.

Relationship and Relationship Set

 A relationship is an association among two or more entities. For example, we may have the

relationship that Ashok works in the pharmacy department. As with entities, we may wish to collect a set

of similar relationships into a relationship set. A relationship set can be thought of as a set of n-tuples :

{e1, e2…………en|e1∈ E1………………………. en∈ En}

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are connected by

straight lines to the rectangular boxes representing the participating entity types. The relationship name

is displayed in the diamond-shaped box.

e1

e2

e3.

.

.

.

.

r1

r2

r3

.

.

.

.

d1

d2

d3

.

.

.

.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 86 |

 Employee Works_for Department

Figure 6.5 Works_for relationship between Employee and Department

Degree of a Relationship Type. The degree of a relationship type is the number of participating entity

types. Hence, the WORKS_FOR relationship is of degree two as shown in figure 6.5. A relationship type

of degree two is called binary, and one of degree three is called ternary.

Role Names and Recursive Relationships. Each entity type that participates in a relationship type plays

a particular role in the relationship. The role name signifies the role that a participating entity from the

entity type plays in each relationship instance, and helps to explain what the relationship means. For

example, in the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and

DEPARTMENT plays the role of department or employer. Role names are not technically necessary in

relationship types where all the participating entity types are distinct, since each participating entity type

name can be used as the role name. However, in some cases the same entity type participates more than

once in a relationship type in different roles. In such cases the role name becomes essential for

distinguishing the meaning of the role that each participating entity plays. Such relationship types are

called recursive relationships. The SUPERVISION relationship type relates an employee to a

supervisor, where both employee and supervisor entities are members of the same

EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in SUPERVISION: once

in the role of supervisor (or boss), and once in the role of supervisee (or subordinate)

Constraints on Binary Relationship Types

• Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary relationship

specifies the maximum number of relationship instances that an entity can participate in. For

example, in the WORKS_FOR binary relationship type, DEPARTMENT: EMPLOYEE is of

cardinality ratio 1: N, meaning that each department can be related to (that is, employs) any

number of employees, but an employee can be related to (work for) only one department.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 87 |

• Participation Constraints and Existence Dependencies. The participation constraint specifies

whether the existence of an entity depends on its being related to another entity via the relationship

type. There are two types of participation constraints—total and partial—that we illustrate by

example. If a company policy states that every employee must work for a department, then an

employee entity can exist only if it participates in at least one WORKS_FOR relationship instance.

Thus, the participation of EMPLOYEE in WORKS_FOR is called total participation, meaning

that every entity in the total set of employee entities must be related to a department entity via

WORKS_FOR. Total participation is also called existence dependency. In manage relationship

we do not expect every employee to manage a department, so the participation of EMPLOYEE in

the MANAGES relationship type is partial, meaning that some or part of the set of employee

entities are related to some department entity via MANAGES, but not necessarily all. In ER

diagrams, total participation (or existence dependency) is displayed as a double lineconnecting

the participating entity type to the relationship, whereas partial participation is represented by a

single line.

Weak Entity Types

 Entity types that do not have key attributes of their own are called weak entity types. In contrast,

regular entity types that do have a key attribute—which include all the examples discussed so far—are

called strong entity types. Entities belonging to a weak entity type are identified by being related to

specific entities from another entity type in combination with one of their attribute values. We call this

other entity type the identifying or owner entity type, and we call the relationship type that relates a weak

entity type to its owner the identifying relationship of the weak entity type.

The following table 9.1 shows the basic notations for ER diagram

Entity Type

Weak Entity Type

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 88 |

Relationship Type

Identifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

Table 6.1 Basic notation in E-R Model

6.4 ENTITY RELATION DIAGRAMS

In the following figure 6.6 we have two entities Student and College and their relationship. 1.ER Diagram

of Student and College -The relationship between Student and College is many to one as a college can

have many students however a student cannot study in multiple colleges at the same time. Student entity

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 89 |

has attributes such as Stu_Id, Stu_Name & Stu_Addr and College entity has attributes such as Col_ID &

Col_Name.

Figure 6.6: ER diagram of Student and College relationship

2. ER Diagram of University Database

Figure 6.7: ER Diagram of University Database System

ER Diagram of Library Database

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 90 |

Figure 6.8: ER Diagram of Library Database

Figure 6.7 and figure 6.8 are the examples of some ER diagrams.

6.5 CHECK YOUR PROGRESS

1. A many to many relationship between two entities usually results in how many tables?

2. An ________ is a set of entities of the same type that share the same properties, or attributes.

3. Entity is a _________

4. Every weak entity set can be converted into a strong entity set by:

5. E-R modelling technique is a ____________.

6.6 SUMMARY

ER Model is used to model the logical view of the system from data perspective which consists of these

components as shown in figure 6.9:

Entity, Entity Type, Entity Set –

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 91 |

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or

it may be an object with a conceptual existence – a company, a job, or a university course.

An Entity is an object of Entity Type and set of all entities is called as entity set. e.g.; E1 is an entity

having Entity Type Student and set of all students is called Entity Set

Attribute(s):

Attributes are the properties which define the entity type. For example, Roll_No, Name, DOB, Age,

Address, Mobile_No are the attributes which defines entity type Student.

Figure 6.9: Components of ER diagram

Relationship-

A relationship type represents the association between entity types. For example,‘Enrolled in’ is a

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 92 |

relationship type that exists between entity type Student and Course. In ER diagram, relationship type is

represented by a diamond and connecting the entities with lines.

Degree of Relationship set-

The number of different entity sets participating in a relationship set is called as degree of a relationship

set.

1. UnaryRelationship– When there is only ONE entity set participating in a relation, the relationship

is called as unary relationship. For example, one person is married to only one person.

2. BinaryRelationship–When there are TWO entities set participating in a relation, the relationship

is called as binary relationship.For example, Student is enrolled in Course.

3. n-aryRelationship– When there are n entities set participating in a relation, the relationship is

called as n-ary relationship.

One to one –A row in table A can have only one matching row in table B, and vice versa. This is not a

common relationship type, as the data stored in table B could just have easily been stored in table A.

However, there are some valid reasons for using this relationship type. A one-to-one relationship can be

used for security purposes, to divide a large table, and various other specific purposes.

One to Many- This is the most common relationship type. In this type of relationship, a row in table A

can have many matching rows in table B, but a row in table B can have only one matching row in table

A.

Many to many- In a many-to-many relationship, a row in table. A can have many matching rows in table

B, and vice versa. A many-to-many relationship could be thought of as two one-to-many relationships,

linked by an intermediary table. The intermediary table is typically referred to as a “junction table” (also

as a “cross-reference table”). This table is used to link the other two tables together. It does this by having

two fields that reference the primary key of each of the other two tables.

6.7 KEYWORDS

• ERD- An Entity Relationship Diagram (ERD) is a snapshot of data structures. An Entity

Relationship Diagram shows entities (tables) in a database and relationships between tables within

that database.

https://database.guide/what-is-a-row/
https://database.guide/what-is-a-table/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 93 |

• DATA MODEL- A data model is an abstract model that organizes elements of data and

standardizes how they relate to one another and to the properties of real-world entities

6.8 SELF-ASSESSMENT TEST

1. When is the concept of a weak entity used in data modeling? Define the terms owner entity type,

weak entity type, identifying relationship type, and Partial key.

2. Discuss the conventions for displaying an ER schema as an ER diagram.

3. Discuss the naming conventions used for ER schema diagrams.

4. What is a network data model? Discuss with example.

5. Describe the hierarchical model with the constraints and structure of database.

6.9 ANSWERS TO CHECK YOUR PROGRESS

1. Three

2. Entity Set

3. Real World thing

4. Adding appropriate attributes

5. Top-down appraoch

6.10 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 94 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 7 VETTER:

RELATIONAL MODEL AND QUERY LANGUAGE

7.0 Learning Objective

7.1 Introduction

7.2 Definition

7.3 What is RDBMS?

7.4 Difference between DBMS and RDBMS

7.5 Relational Algebra

7.6 Relational Calculus

7.7 Characteristics of SQL

7.8 SQL Data Types

7.9 SQL Literals

7.10 SQL Constraints

7.11Check Your Progress

7.12Summary

7.13Keywords

7.14Self-Assessment Test

7.15Answers to check your progress

7.16 References / Suggested Readings

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 95 |

7.0 LEARNING OBJECTIVE

• The objective of this chapter is to understand the concepts of relational database, to know the

difference between DBMS and RDBMS.To understand the parameters of RDBMS and

components of RDBMS in detail such as the concepts and notations of the relational model. This

chapter is helps the reader to understand the most popular and widely used query language SQL.

This chapter presents the main features of the SQL standard for commercial relational DBMSs.

The main characteristics of SQL, SQL data types and SQL literals.

7.1 INTRODUCTION

The relational model was firstintroduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd

1970), andattracted immediate attention due to its simplicity and mathematical foundation. The modeluses

the concept of a mathematical relation-which looks somewhat like a table of values-asits basic building

block, and has its theoretical basis in set theory and first-order predicatelogic. In this chapter we discuss

the basic characteristics of the model and its constraints.The first commercial implementations of the

relational model became available in theearly 1980s, such as the Oracle DBMS and the SQL/DS system

on the MVS operating system byIBM. Since then, the model has been implemented in a large number of

commercial systems.Currentpopular relational DBMSs (RDBMSs) include DB2 and lnformix Dynamic

Server (fromIBM), Oracle and Rdb (from Oracle), and SQL Server and Access (from Microsoft).Most of

the problems faced at the time of implementation of any system areoutcome of a poor database design. In

many cases it happens that system has tobe continuously modified in multiple respects due to changing

requirements ofusers. It is very important that a proper planning has to be done.A relation in a relational

database is based on a relational schema, which consistsof number of attributes.A relational database is

made up of a number of relations and correspondingrelational database schema.The goal of a relational

database design is to generate a set of relation schemathat allows us to store information without

unnecessary redundancy and also toretrieve information easily.One approach to design schemas that are

in an appropriate normal form. Thenormal forms are used to ensure that various types of anomalies

andinconsistencies are not introduced into the database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 96 |

 Database management systems (DBMS) must have a query language so that the users can access

the data stored in the database. Relational algebra (RA) is considered as a procedural query

language where the user tells the system to carry out a set of operations to obtain the desired results. i.e.

The user tells what data should be retrieved from the database and how to retrieve it. In this article, I will

give a brief introduction to relational algebra and go through a few operations with examples and

PostgreSQL commands.

Relational Calculus, which is a non-procedural query language. In this chapter, you will learn about

the relational calculus and its concept about the database management system. A certain arrangement is

explicitly stated in relational algebra expression, and a plan for assessing the query is implied. In the

relational calculus, there is no description and depiction of how to assess a query; instead, a relational

calculus query focuses on what is to retrieve rather than how to retrieve it. It uses mathematical predicate

calculus. The relational calculus is not the same as that of differential and integral calculus in mathematics

but takes its name from a branch of symbolic logic termed as predicate calculus. When applied to

databases, it is found in two forms. These are

• Tuple relational calculus which was originally proposed by Codd in the year 1972 and

• Domain relational calculus which was proposed by Lacroix and Pirotte in the year 1977

A calculus expression specifies what is to be retrieved rather than how to retrieve it. Therefore, the

relational calculus is considered to be a nonprocedural language. This differs from relational algebra,

where we must write a sequence of operations to specify a retrieval request; hence, it can be considered

as a procedural way of stating a query. It is possible to nest algebra operations to form a single expression;

however, a certain order among the operations is always explicitly specified in a relational algebra

expression. This order also influences the strategy for evaluating the query. A calculus expression may

be written in different ways, but the way it is written has no bearing on howa query should be evaluated.

The SQL language may be considered one of the major reasons for the commercial success of

relational databases. Because it became a standard for relational databases, users were less concerned

about migrating their database applications from other types of database systems—for example, network

or hierarchical systems—to relational systems. This is because even if the users became dissatisfied with

the particular relational DBMS product they were using, converting to another relational DBMS product

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 97 |

was not expected to be too expensive and time-consuming because both systems followed the same

language standards. However, the relational algebra operations are considered to be too technical for most

commercial DBMS users because a query in relational algebra is written as a sequence of operations that,

when executed, producesthe required result. Hence, the user must specify how—that is, in what order—

to execute the query operations. On the other hand, the SQL language provides a higher-level declarative

language interface, so the user only specifies what the result is to be, leaving the actual optimization and

decisions on how to execute the query to the DBMS. Although SQL includes some features from

relational algebra, it is based to a greater extent on the tuple relational calculus.

 The name SQLis presently expanded as Structured Query Language. Originally, SQL was called

SEQUEL (Structured English QUEry Language) and was designed and implemented at IBM Research as

the interface for an experimental relational database system called SYSTEM R. SQL is now the standard

language for commercial relational DBMSs. A joint effort by the American National Standards Institute

(ANSI) and the International Standards Organization (ISO) has led to a standard version of SQL (ANSI

1986), called SQL-86 or SQL1. A revised and much expanded standard called SQL-92 (also referred to

as SQL2) was subsequently developed. The next standard that is well-recognized is SQL:1999, which

started out as SQL3. Two later updates to the standard are SQL:2003 and SQL:2006, which added XML

features among other updates to the language. Another update in 2008 incorporated more object database

features in SQL. .SQL is a comprehensive database language: It has statements for data definitions,

queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facilities for defining views

on the database, for specifying security and authorization, for defining integrity constraints, and for

specifying transaction controls. It also has rules for embedding SQL statements into a general-purpose

programming language such as Java, COBOL, or C/C++.

7.2 DEFINITION

Relational Algebra-Relational algebra is a procedural query language that works on relational model.

The purpose of a query language is to retrieve data from database or perform various operations such as

insert, update, and delete on the data. When I say that relational algebra is a procedural query language,

it means that it tells what data to be retrieved and how to be retrieved. On the other hand relational calculus

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 98 |

is a non-procedural query language, which means it tells what data to be retrieved but doesn’t tell how to

retrieve it. We will discuss relational calculus in a separate tutorial. Relational algebra is a procedural

query language. It gives a step by step process to obtain the result of the query. It uses operators to perform

queries.

What is Relational Calculus?

Relational calculus is a non-procedural query language that tells the system what data to be retrieved but

doesn’t tell how to retrieve it. Relational calculus is a non-procedural query language. In the non-

procedural query language, the user is concerned with the details of how to obtain the end results. The

relational calculus tells what to do but never explains how to do. Contrary to Relational Algebra which is

a procedural query language to fetch data and which also explains how it is done, Relational Calculus in

non-procedural query language and has no description about how the query will work or the data will be

fetched. It only focusses on what to do, and not on how to do it.

Relational Calculus exists in two forms as shown in figure 4.1:

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Figure 7.1: Types of relational calculus

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 99 |

SQL- SQL uses the terms table, row, and column for the formal relational model terms relation, tuple,

and attribute, respectively. Unlike most programming languages, SQL is unique in that it is not procedural

but declarative in nature. This means that when using this language one states what data is desired and

not how to get that data. A component within the database server known as the optimizer will

automatically determine how to get the data most efficiently. Therefore the user may concentrate solely

on what data is desired and then allow the database to automatically select the optimum method by which

to retrieve that data.

7.3 WHAT IS RDBMS?

RDBMS stands for Relational Database Management System. RDBMS data isstructured in database

tables, fields and records. Each RDBMS table consists ofdatabase table rows. Each database table row

consists of one or more database tablefields.RDBMS store the data into collection of tables, which might

be related by commonfields (database table columns). RDBMS also provide relational operators

tomanipulate the data stored into the database tables. Most RDBMS use SQL asdatabase

querylanguage.The most popular RDBMS are MS SQL Server, DB2, Oracle and MySQL.The relational

model is an example of record-based model. Record based models areso named because the database is

structured in fixed format records of several types.Each table contains records of a particular type. Each

record type defines a fixednumber of fields, or attributes. The columns of the table correspond to the

attributes ofthe record types. The relational data model is the most widely used data model, and avast

majority of current database systems are based on the relational model.The relational model was designed

by the IBM research scientist and mathematician,Dr. E.F.Codd. Many modern DBMS do not conform to

the Codd’s definition of aRDBMS, but nonetheless they are still considered to be RDBMS.

Two of Dr.Codd’s main focal points when designing the relational model were tofurther reduce data

redundancy and to improve data integrity within database systems.

 The relational model originated from a paper authored by Dr.codd entitled “A

Relational Model of Data for Large Shared Data Banks”, written in 1970. This paperincluded the

following concepts that apply to database management systems forrelational databases.The relation is the

only data structure used in the relational data model to representboth entities and relationships between

them.Rows of the relation are referred to as tuples of the relation and columns are itsattributes. Each

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 100 |

attribute of the column are drawn from the set of values known asdomain. The domain of an attribute

contains the set of values that the attribute mayassume.From the historical perspective, the relational data

model is relatively new .The firstdatabase systems were based on either network or hierarchical models

.The relationaldata model has established itself as the primary data model for commercial dataprocessing

applications. Its success in this domain has led to its applications outsidedata processing in systems for

computer aided design and other environments.A relational database management system (RDBMS) is a

collection of programs and capabilities that enable IT teams and others to create, update, administer and

otherwise interact with a relational database. RDBMS store data in the form of tables, with most

commercial relational database management systems using Structured Query Language (SQL) to access

the database. However, since SQL was invented after the initial development of the relational model, it is

not necessary for RDBMS use.

7.4 DIFFERENCE BETWEEN DBMS AND RDBMS

A DBMS has to be persistent, that is it should be accessible when the programcreated the data ceases to

exist or even the application that created the data restarted.A DBMS also has to provide some uniform

methods independent of a specificapplication for accessing the information that is stored.RDBMS is a

Relational Data Base Management System Relational DBMS. This addsthe additional condition that the

system supports a tabular structure for the data, withenforced relationships between the tables. This

excludes the databases that don'tsupport a tabular structure or don't enforce relationships between

tables.You can say DBMS does not impose any constraints or security with regard to datamanipulation it

is user or the programmer responsibility to ensure the ACIDPROPERTY of the database whereas the

RDBMS is more with this regard becauseRDBMS define the integrity constraint for the purpose of

holding ACID PROPERTY.

 In general, databases store sets of data that can be queried for use in other applications. A database

management system supports the development, administration and use of database platforms. An RDBMS

is a type of database management system (DBMS) that stores data in a row-based table structure which

connects related data elements. An RDBMS includes functions that maintain the security, accuracy,

integrity and consistency of the data. This is different than the file storage used in a DBMS.Other

differences between database management systems and relational database management systems include:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 101 |

• Number of allowed users- While a DBMS can only accept one user at a time, an RDBMS can

operate with multiple users.

• Hardware and software requirements- A DBMS needs less software and hardware than an

RDBMS.

• Amount of data- RDBMS can handle any amount of data, from small to large, while a DBMS

can only manage small amounts.

• Database structure- In a DBMS, data is kept in a hierarchical form, whereas an RDBMS utilizes

a table where the headers are used as column names and the rows contain the corresponding

values.

• ACID implementation- DBMS do not use the atomicity, consistency, isolation and durability

(ACID) model for storing data. On the other hand, RDBMS base the structure of their data on the

ACID model to ensure consistency.

• Distributed databases- While an RDBMS offers complete support for distributed databases, a

DBMS will not provide support.

• Types of programs managed- While an RDBMS helps manage the relationships between its

incorporated tables of data, a DBMS focuses on maintaining databases that are present within the

computer network and system hard disks.

• Support of database normalization- An RDBMS can be normalized, but a DBMS cannot.

DBMS vs RDBMS using different parameters

Parameter DBMS RDBMS

Storage DBMS stores data as a file. Data is stored in the form of tables.

Database structure

DBMS system, stores data in

either a

navigational or hierarchical

form.

RDBMS uses a tabular structure

Wherethe headers are the column

names, and the rows contain

corresponding values

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 102 |

Parameter DBMS RDBMS

Number of Users
DBMS supports single user

only.
It supports multiple users.

ACID

In a regular database,

the data may not be

stored following the ACID

model.

This can develop

inconsistencies

in the database.

Relational databases are harder to

construct, but they are consistent and

well structured. They obey ACID

(Atomicity, Consistency,

Isolation, Durability).

Type of program

It is the program for managing

the databases on the computer

networks and the system hard

disks.

It is the database systems which are

used for maintaining the relationships

among the tables.

Hardware and

software needs.

Low software and hardware

needs.

Higher hardware and software

need.

Integrity

constraints

DBMS does not support the

integrity

constants. The integrity

constants are not imposed at

the file level.

RDBMS supports the integrity

constraints at the schema level.

Values beyond a defined range

cannot be stored into the particular

RDMS column.

Normalization
DBMS does not support

Normalization
RDBMS can be Normalized.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 103 |

Parameter DBMS RDBMS

Distributed

Databases

DBMS does not support

distributed database.

RBMS offers support for distributed

databases.

Ideally suited for
DBMS system mainly deals

with small quantity of data.

RDMS is designed to handle a large

amount of data.

7.6 RELATIONAL ALGEBRA

The relational algebra is often considered to be an integral part of the relational data model, and its

operations can be divided into two groups. One group includes set operations from mathematical set theory;

these are applicable because each relation is defined to be a set of tuples in the formal relational model.

Set operations include UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT.

The other group consists of operations developed specifically for relational databases-these include

SELECT PROJECT, and JOIN, among others. This chapter firstly discuss the SELECT and POJECT

operations because they are unary operations that operate on single relations. Then the chapter discusses

the JOIN and other complex binary operations, which operate on two tables. Some common database

requests cannot be performed with the original relational algebra operations, so additional operations were

created to express these requests. These include aggregate functions, which are operations that can

summarize data from the tables, as well as additional types of JOIN and UNION operations. These

operations were added to the original relational algebra because of their importance to many database

applications. As, the chapter ends with the discussion of relational algebra, the subsequent chapter will

focus on describing the other main formal language for relational databases and relational calculus.

The relational algebra is a theoretical procedural query language which takes an instance of relations and

does operations that work on one or more relations to describe another relation without altering the

original relation(s). Thus, both the operands and the outputs are relations. So the output from one

operation can turn into the input to another operation, which allows expressions to be nested in the

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 104 |

relational algebra, just as you nest arithmetic operations. This property is called closure: relations are

closed under the algebra, just as numbers are closed under arithmetic operations.

The relational algebra is a relation-at-a-time (or set) language where all tuples are controlled in one

statement without the use of a loop. There are several variations of syntax for relational algebra

commands, and you use a common symbolic notation for the commands and present it informally.

The primary operations of relational algebra are as follows:

• Select

• Project

• Union

• Set different

• Cartesian product

• Rename

Relational algebra is a family of algebras with a well-founded semantics used for modelling the data

stored in relational databases, and defining. It takes instances of relations as input and yields instances of

relations as output. It uses operators to perform queries. An operator can be either unary or binary. They

accept relations as their input and yield relations as their output. Relational algebra is performed

recursively on a relation and intermediate results are also considered relations. Relational algebra collects

instances of relations as input and gives occurrences of relations as output. It uses various operations to

perform this action. SQL Relational algebra query operations are performed recursively on a relation. The

output of these operations is a new relation, which might be formed from one or more input relations.

The figure 7.2 shows how we use relational algebra to fetch information or data from a bigger dataset or

table. In relational algebra, input is a relation(table from which data has to be accessed) and output is

also a relation(a temporary table holding the data asked for by the user).

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 105 |

Figure 7.2: Use of Relational Algebra

Relational Algebra works on the whole table at once, so we do not have to use loops etc. to iterate over

all the rows(tuples) of data one by one. All we have to do is specify the table name from which we need

the data, and in a single line of command, relational algebra will traverse the entire given table to fetch

data for you.

7.7 RELATIONAL CALCULUS

Relational calculus is a non-procedural query language that tells the system what data to be retrieved but

doesn’t tell how to retrieve it. Relational calculus is a non-procedural query language.Relational Calculus

exists in two forms.

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Tuple Relational Calculus

In the tuple relational calculus, you will have to find tuples for which a predicate is true. The calculus is

dependent on the use of tuple variables. A tuple variable is a variable that 'ranges over' a named relation:

i.e., a variable who’s only permitted values are tuples of the relation.The tuple relational calculus is

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 106 |

specified to select the tuples in a relation. In TRC, filtering variable uses the tuples of a relation.The result

of the relation can have one or more tuples.Tuple Relational Calculus is a non-procedural query language

unlike relational algebra. Tuple Calculus provides only the description of the query but it does not provide

the methods to solve it.

Domain Relational Calculus

In contrast to tuple relational calculus, domain relational calculus uses list of attribute to be selected from

the relation based on the condition. It is same as TRC, but differs by selecting the attributes rather than

selecting whole tuples. In the tuple relational calculus, you have use variables that have a series of tuples

in a relation. In the domain relational calculus, you will also use variables, but in this case, the variables

take their values from domains of attributes rather than tuples of relations.In domain relational calculus,

filtering is done based on the domain of the attributes and not based on the tuple values.The second form

of relation is known as Domain relational calculus.

• In domain relational calculus, filtering variable uses the domain of attributes. Domain relational

calculus uses the same operators as tuple calculus.

• It uses logical connectives ∧ (and), ∨ (or) and ┓ (not).

• It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable.

7.7 CHARACTERISTICS OF SQL

SQL is both an easy-to-understand language and a comprehensive tool for managing data. Here are some

of the major features of SQL and the market forces that have made it successful:

a) Vendor Independence

A SQL-based database and the programs that use it can be moved from one DBMS to another

vendor's DBMS with minimal conversion effort and little retraining of personnel.

b) SQL Standards

In 1986, the American National Standards Institute (ANSI) and the International Standards

Organization (ISO) published the first official standard for SQL which was expanded in 1989,

1992 and 1999. The evolving standards serve as an official stamp of approval for SQL and have

speeded its market acceptance.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 107 |

c) Portability across Computer Systems

SQL databases run on various computer systems, ranging from mainframes to stand-alone

computers. SQL-based applications that begin on single-user or departmental server systems can

be moved to larger server systems as they grow.

d) Relational Foundation

We already know that SQL is a language for relational databases. The relational database model

and row/column structure make SQL simple and easy to understand. he relational model also has

a strong theoretical foundation that has guided the evolution and implementation of relational

databases.

e) Programmatic Database Access

SQL is also a database language used by programmers to write applications that access a database.

The same SQL statements are used for both interactive and programmatic access, so the database

access parts of a program can be tested first with interactive SQL and then embedded into the

program.

7.8 SQL DATA TYPES

The basic data types available for attributes include numeric, character string, bit string, Boolean,

date, and time.

■ Numeric data types include integer numbers of various sizes (INTEGER or INT, and SMALLINT) and

floating-point (real) numbers of various precision (FLOAT or REAL, and DOUBLE PRECISION).

Formatted numbers can be declared by using DECIMAL(i,j)—or DEC(i,j) or NUMERIC(i,j)—where i,

the precision, is the total number of decimal digits and j, the scale, is the number of digits after the decimal

point. The default for scale is zero, and the default for precision is implementation-defined.

■ Character-string data types are either fixed length—CHAR(n) or CHARACTER(n), where n is the

number of characters—or varying length— VARCHAR(n) or CHAR VARYING(n) or CHARACTER

VARYING(n), where n is the maximum number of characters. When specifying a literal string value, it

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 108 |

is placed between single quotation marks (apostrophes), and it is case sensitive (a distinction is made

between uppercase and lowercase). For fixedlength strings, a shorter string is padded with blank

characters to the right. For example, if the value ‘Sudha’ is for an attribute of type CHAR(10), it is padded

with five blank characters to become ‘Sudha ’ if needed. Padded blanks are generally ignored when strings

are compared

■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—BIT VARYING(n),

where n is the maximum number of bits. The default for n, the length of a character string or bit string, is

1. Literal bit strings are placed between single quotes but preceded by a B to distinguish them from

character strings; for example, B‘10101’.5 Another variable-length bitstring data type called BINARY

LARGE OBJECT or BLOB is also available

to specify columns that have large binary values, such as images. As for CLOB, the maximum length of

a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G). For example, BLOB(30G)

specifies a maximum length of 30 gigabits.

■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of the presence

of NULL values, a three-valued logic is used, so a third possible value for a Boolean data type is

UNKNOWN.

■ The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in the form

YYYY-MM-DD. The TIME data type has at least eight positions, with the components HOUR,

MINUTE, and SECOND in the form HH:MM:SS. Only valid dates and times should be allowed by the

SQL implementation. This implies that months should be between 1 and 12 and dates must be between 1

and 31; furthermore, a date should be a valid date for the corresponding month. The < (less than)

comparison can be used with dates or times—an earlier date is considered to be smaller than a later date,

and similarly with time.

Some additional data types are discussed below. The list of types discussed here is not exhaustive;

different implementations have added more data types to SQL.

■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum of six

positions for decimal fractions of seconds and an optional WITH TIME ZONE qualifier. Literal values

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 109 |

are represented by single quoted strings preceded by the keyword TIMESTAMP, with a blank space

between data and time; for example, TIMESTAMP ‘2008-09-27 09:12:47.648302’.

■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data type. This

specifies an interval—a relative value that can be used to increment or decrement an absolute value of a

date, time, or timestamp. Intervals are qualified to be either YEAR/MONTH intervals or DAY/TIME

intervals. The format of DATE, TIME, and TIMESTAMP can be considered as a special type of string.

Hence, they can generally be used in string comparisons by being cast (or coerced or converted) into the

equivalent strings.

7.9 SQL LITERAL

Data Literal: A program source element that represents a data value. Data literals can be divided into

multiple groups depending upon the type of the data it is representing and how it is representing.

1. Character String Literals are used to construct character strings, exact numbers, approximate

numbers and data and time values. The syntax rules of character string literals are pretty simple:

• A character string literal is a sequence of characters enclosed by quote characters.

• The quote character is the single quote character "'".

• If "'" is part of the sequence, it needs to be doubled it as "''".

Examples of character string literals:

'Hello’

‘world!'

'Loews

'123'

2. Hex String Literals are used to construct character strings and exact numbers. Hexadecimal literals

consist of 0 to 62000 hexadecimal digits delimited by a matching pair of single quotes, where a

hexadecimal digit is a character from 0 to 9, a to f, or A to F. The syntax rules for hex string literals are

also very simple:

• A hex string literal is a sequence of hex digits enclosed by quote characters and prefixed with "x".

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 110 |

• The quote character is the single quote character "'".

Examples of hex string literals:

x ‘41423534’

x ‘ 57664873’

3. Numeric Literals are used to construct exact numbers and approximate numbers. A numeric literal is

a string of 1 to 40 characters selected from the following:

• plus sign

• minus sign

• digits 0 through 9

• decimal point

Numeric literals are also referred to as numeric constants. Syntax rules of numeric literals are:

• A numeric literal can be written in signed integer form, signed real numbers without exponents,

or real numbers with exponents.

Examples of numeric literals:

1

22.33

-345

4. Date and Time Literals are used to construct date and time values. The syntax of date and time literals

are:

• A date literal is written in the form of "DATE 'yyyy-mm-dd'".

• A time literal is written in the form of "TIMESTAMP 'yyyy-mm-dd hh:mm:ss'".

Examples of data and time literals:

DATE ‘2013-07-15’

TIMESTAMP ’2013-07-15 01:02:03’

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 111 |

7.10 SQL CONSTRAINTS

Constraints are the rules enforced on data columns on a table. These are used to limit the type of data that

can go into a table. This ensures the accuracy and reliability of the data in the database. Constraints can

either be column level or table level. Column level constraints are applied only to one column whereas,

table level constraints are applied to the entire table.

Following are some of the most commonly used constraints available in SQL:

• NOT NULL Constraint: Ensures that a column cannot have a NULL value.

• DEFAULT Constraint: Provides a default value for a column when none is specified.

• UNIQUE Constraint: Ensures that all the values in a column are different.

• PRIMARY Key: Uniquely identifies each row/record in a database table.

• FOREIGN Key: Uniquely identifies a row/record in any another database table.

• CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain

conditions.

• INDEX: Used to create and retrieve data from the database very quickly.

7.11 CHECK YOUR PROGRESS

1. A relation in a relational database is based on a relational schema, which consists of number of

………………… .

2. …………………is a Relational Data Base Management System.

3. Rows of the relation are referred to as ………………… of the relation.

4. The relational model was designed by the IBM research scientist and

mathematician, Dr. …………………..

5. The ………………… is the only data structure used in the relational data model to represent both

entities and relationships between them.

6. Does the normal forms never removes anomalies?

7. Is each attribute of the column are drawn from the set of values known as domain?

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 112 |

8. Rename operator is represented by________.

9. The union operator comes under which type? Unary or binary.

10. Rename operator comes under which category? Unary or binary.

11. TRC stands for________?

12. SQL is a combination of a _________ language and a _________ language.

13. SQL stands for_________.

14. SQL was developed by ______ in the late 1970’s.

7.12 SUMMARY

A DBMS is a software used to store and manage data. The DBMS was introduced during 1960's to store

any data. It also offers manipulation of the data like insertion, deletion, and updating of the data.DBMS

system also performs the functions like defining, creating, revising and controlling the database. It is

specially designed to create and maintain data and enable the individual business application to extract

the desired data.

Relational Database Management System (RDBMS) is an advanced version of a DBMS system.

It came into existence during 1970's. RDBMS system also allows the organization to access data more

efficiently then DBMS. RDBMS is a software system which is used to store only data which need to be

stored in the form of tables. In this kind of system, data is managed and stored in rows and columns which

is known as tuples and attributes. RDBMS is a powerful data management system and is widely used

across the world.The goal of a relational database design is to generate a set of relation schema thatallows

us to store information without unnecessary redundancy and also to retrieveinformation easily.A database

system is an integrated collection of related files, along with details ofinterpretation of the data contained

therein. DBMS is a software that allows accessto data contained in a database. The objective of the DBMS

is to provide a convenientand effective method of defining, storing and retrieving the information

contained in thedatabase.The DBMS interfaces with application programs so that the data contained in

thedatabase can be used by multiple applications and users. The DBMS allows theseusers to access and

manipulate the data contained in the database in a convenientand effective manner. In addition the DBMS

exerts centralized control of the database,prevents unauthorized users from accessing the data and ensures

privacy of data.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 113 |

In Relational database model, a table is a collection of data elements organised in terms of rows

and columns. A table is also considered as a convenient representation of relations. But a table can have

duplicate row of data while a true relation cannot have duplicate data. Table is the simplest form of data

storage.All data stored in the tables are provided by an RDBMS. Ensures that all data stored are in the

form of rows and columns. Facilitates primary key, which helps in unique identification of the rows. Index

creation for retrieving data at a higher speed. Facilitates a common column to be shared amid two or more

tables. Major components of RDBMS are Table, Record or Tuple, Field, Domain, Instance, Schema,

Keys. Relational database stores data in tables. Tables are organized into columns, and each column stores

one type of data (integer, real number, character strings, date). The data for a single “instance” of a table

is stored as a row.Many relational database systems have an option of using the SQL (Structured Query

Language) for querying and maintaining the database.

In this chapter we presented two formal languages for the relational model of data. They are used

to manipulate relations and produce new relations as answers to queries. We discussedthe relational

algebra and its operations, which are used to specify a sequence of operations to specify a query. Then

we introduced two types of relational calculi calledtuple calculus and domain calculus; they are

declarative in that they specify the result of aquery without specifying how to produce the query result.

The data for a single “instance” of a table is stored as a row.Many relational database systems have an

option of using the SQL (Structured Query Language) for querying and maintaining the database.

Relational calculus is a non-procedural query language. It uses mathematical predicate calculus instead

of algebra. It provides the description about the query to get the result whereas relational algebra gives

the method to get the result. It informs the system what to do with the relation, but does not inform how

to perform it.For example, steps involved in listing all the students who attend ‘Database’ Course in

relational algebra would be

• SELECT the tuples from COURSE relation with COURSE_NAME = ‘DATABASE’

• PROJECT the COURSE_ID from above result

• SELECT the tuples from STUDENT relation with COUSE_ID resulted above.

Whereas, SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to

communicate with a database. According to ANSI (American National Standards Institute), it is the

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 114 |

standard language for relational database management systems. SQL statements are used to perform tasks

such as update data on a database, or retrieve data from a database. Some common relational database

management systems that use SQL are: Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc.

Although most database systems use SQL, most of them also have their own additional proprietary

extensions that are usually only used on their system. However, the standard SQL commands such as

"Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to accomplish almost everything

that one needs to do with a database. This tutorial will provide you with the instruction on the basics of

each of these commands as well as allow you to put them to practice using the SQL Interpreter.

7.13 KEYWORDS

• Domain-A domain describes the set of possible values for a given attribute, and can be considered

a constraint on the value of the attribute. Mathematically, attaching a domain to an attribute means

that any value for the attribute must be an element of the specified set. The character string "ABC",

for instance, is not in the integer domain, but the integer value 123 is.

• Constraints-Constraints make it possible to further restrict the domain of an attribute. For

instance, a constraint can restrict a given integer attribute to values between 1 and 10.

• Tuple-A data set representing a single item.

• Column-A labeled element of a tuple, e.g. "Address" or "Date of birth"

• Table-A set of tuples sharing the same attributes; a set of columns and rows

• View- Any set of tuples; a data report from the RDBMS in response to a query

7.14 SELF-ASSESSMENT TEST

1. Explain the following terms

i) Domain

ii) Tuple

iii) Relation

iv) Attribute

2. Explain difference between DBMS and RDBMS.

3. Why relational data model is so popular?

4. What are record based models?

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 115 |

5. How RDBMS stores its data?

6. Explain the role of relational algebra in relational database.

7. What are the different type of relational algebra? Discuss in detail

8. List the data types that are allowed for SQL attributes.

9. How does SQL allow implementation of the entity integrity and referential integrity constraints

described in Chapter 3? What about referential triggered actions?

10. How do the relations (tables) in SQL differ from the relations defined formally in relation algebra?

Discuss the other differences in terminology. Why does SQL allow duplicate tuples in a table or

in a query result?

7.15 ANSWERS TO CHECK YOUR PROGRESS

1. Attributes

2. RDBMS

3. Tuples

4. E.F Codd

5. Relation

6. False

7. True

8. ρ

9. Binary

10. Unary

11. Tuple Relational Calculus

12. Data manipulation

13. Structured Query language

14. IBM

7.16 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 116 |

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• https://www.geeksforgeeks.org/difference-between-rdbms-and-dbms/

• https://en.wikipedia.org/wiki/Relational_database

• https://www.javatpoint.com/what-is-rdbms

• https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-

management-system

https://www.geeksforgeeks.org/difference-between-rdbms-and-dbms/
https://en.wikipedia.org/wiki/Relational_database
https://www.javatpoint.com/what-is-rdbms
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 117 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 8 VETTER:

RELATIONAL DATABASE DESIGN

STRUCTURE

8.0 Learning Objective

8.1 Introduction

8.2 Definition

8.3 Purpose of Functional Dependency

8.4 Data Redundancy in Functional Dependency

8.5 Update Anomalies

8.6 Check Your Progress

8.7 Summary

8.8 Keywords

8.9 Self-Assessment Test

8.10 Answers to check your progress

8.11 References / Suggested Readings

8.0 LEARNING OBJECTIVE

• To understand the concepts of Functional Dependency, Normalization.

• To learn the purpose of functional dependency.

• To discuss and Update the anomalies in functional dependency.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 118 |

• To understand the data redundancy in Functional Dependency.

8.1 INTRODUCTION

Each relation schema consists of a number of attributes, andthe relational database schema consists of a

number of relation schemas. So far, we have assumed that attributes are grouped to form a relation schema

by using the common sense of thedatabase designer or by mapping a database schema design from a

conceptual datamodel such as the ER or enhanced ER (EER) or some other conceptual data model. These

models make the designer identify entity types and relationship types and their respective attributes, which

leads to a natural and logical grouping of the attributes into relations when the mapping procedures. We

have not developed any measure ofappropriateness or "goodness" to measure the quality of the design,

other than the intuitionof the designer. In this chapter we discuss some of the theory that has been

developedwiththe goal of evaluating relational schemas for design quality-that is, to measureformally

why one set of groupings of attributes into relation schemas is better thananother.

There are two levels at which we can discuss the "goodness" of relation schemas. Thefirst is the

logical (or conceptual) level-how users interpret the relation schemas and themeaning of their attributes.

Having good relation schemas at this level enables users to understand clearly the meaning of the data in

the relations, and hence to formulate their queries correctly. The second is the implementation (or storage)

level-how the tuples in a base relation are stored and updated. This level applies only to schemas of base

relations-which will be physically stored as files-whereas at the logical level we are interested in schemas

of both base relations and views (virtual relations). The relational database design theory developed in

this chapter applies mainly to base relations, although some criteria of appropriateness also apply to

views. As with many design problems, database design may be performed using two approaches: bottom-

up or top-down. A bottom-up design methodology (also called designby synthesis) considers the basic

relationships among individual attributes as the starting point and uses those to construct relation

schemas. This approach is not very popular in practice. Because it suffers from the problem of having to

collect a large number of binary relationships among attributes as the starting point. In contrast, a top-

down design methodology (also called design by analysis) starts with a number of groupings of attributes

into relations that exist together naturally, for example, on an invoice, a form, or a report. The relations

are then analysed individually and collectively, leading to further decomposition until all desirable

properties are met. The theory described in this chapter is applicable to both the top-down and bottom-up

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 119 |

design approaches, but is more practical when used with the top-down approach. We define the concept

of functionaldependency, a formal constraint among attributes that is the main tool for formally measuring

the appropriateness of attribute groupings into relation schemas. Properties of functional dependencies

are also studied and analysed.Then properties offunctional dependencies are also studied and analysed.

Then we will discuss the how functional dependencies can be used to group attributes into relation

schemas that are in a normal form. A relation schema is in a normal form when it satisfies certain desirable

properties. The process of normalization consists of analysing relations to meet increasingly more

stringent normal forms leading to progressively better groupings of attributes. Normal forms are specified

in terms of functional dependencies-which are identified by the database designer-and key attributes of

relation schemas.

When developing the schema of a relational database, one of the most important aspects to be

taken into account is to ensure that the duplication is minimized. This is done for 2 purposes:

• Reducing the amount of storage needed to store the data.

• Avoiding unnecessary data conflicts that may creep in because of multiple copies of the same data

getting stored.

8.2 DEFINITION

Functional Dependency: A functional dependency is a constraint between two sets of attributes from the

database. Suppose that our relational database schema has n attributes AI, A2, ……, An; let us think of

the whole database as being described by a single universal relation schema R = {A1, A2, A3…….., An).

6We do not imply that we will actually store the database as a single universal table; we use this concept

only in developing the formal theory of data dependencies

Definition: A functional dependency is a constraint between two sets of attributes from the database.

Suppose that our relational database schema has n attributes A1, A2, ..., An. If we think of the whole

database as being described by a single universal relation schema R = {A1, A2, ... , An}.A functional

dependency (FD) is a relationship between two attributes, typically between the PK and other non-key

attributes within a table. For any relation R, attribute Y is functionally dependent on attribute X (usually

the PK), if for every valid instance of X, that value of X uniquely determines the value of Y.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 120 |

It determines the relation of one attribute to another attribute in a database management system (DBMS)

system. Functional dependency helps you to maintain the quality of data in the database. A functional

dependency is denoted by an arrow →. The functional dependency of X on Y is represented by X → Y.

Functional Dependency plays a vital role to find the difference between good and bad database design.

Example:

Employee number Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name, city, salary,

etc. By this, we can say that the city, Employee Name, and salary are functionally depended on Employee

number.

Definition of Normalization:

Database Normalization is a technique of organizing the data in the database. Normalization is a

systematic approach of decomposing tables to eliminate data redundancy(repetition) and undesirable

characteristics like Insertion, Update and Deletion Anomalies. It is a multi-step process that puts data into

tabular form, removing duplicated data from the relation tables.

Normalization is used for mainly two purposes,

• Eliminating redundant(useless) data.

• Ensuring data dependencies make sense i.e. data is logically stored.

8.3 PURPOSE OF FUNCTIONAL DEPENDANCY

A functional dependency, denoted by X Y, between two sets of attributes X and Y that are subsets of

R, such that any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in rdepend on, or are determined by, the values

of the X component; we say that the values of the X component of a tuple uniquely (or functionally)

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 121 |

determine the values of the Y component. We say that there is a functional dependency from X to Y, or

that Y is functionally dependent on X.

Functional dependency is represented as FD or f.d. The set of attributes X is called the left-hand side of

the FD, and Y is called the right-hand side.

X functionally determines Y in a relation schema R if, and only if, whenever two tuples of r(R) agree on

their X-value, they must necessarily agree on their Y-value. If a constraint on R states that there cannot

be more than one tuple with a given X-value in any relation instance r(R)—that is, X is a candidate key

of R— this implies that X Y for any subset of attributes Y of R.

If X is a candidate key of R, then X→R.

If X→Y in R, this does not imply that Y→X in R.

A functional dependency is a property of the semantics or meaning of the attributes.Whenever the

semantics of two sets of attributes in R indicate that a functional dependency should hold, we specify the

dependency as a constraint.

Legal Relation States:

Relation extensions r(R) that satisfy the functional dependency constraints are called legal relation states

(or legal extensions) of R. Functional dependencies are used to describe further a relation schema R by

specifying constraints on its attributes that must hold at all times. Certain FDs can be specified without

referring to a specific relation, but as a property of those attributes given their commonly understood

meaning.

For example, {State, Driver_license_number}→ Ssn should holdfor any adult in the United States and

hence should hold whenever these attributes appear in a relation. Consider the relation schema

EMP_PROJ from the semantics of the attributes and the relation, we know that the following functional

dependencies should hold:

a. Ssn→Ename

b. Pnumber →{Pname, Plocation}

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 122 |

c. {Ssn, Pnumber}→Hours

A functional dependency is a property of the relation schema R, not of a particular legal relation state r

of R. Therefore, an FD cannot be inferred automatically from a given relation extension r but must be

defined explicitly by someone who knows the semantics of the attributes of R.

Example 1: For the relation Student(studentID, name, DateOfBirth, phoneNumber), assuming

each student has only one name, then the following functional dependency holds

{studentID} →{name, DateOfBirth}

However, assuming a student may have multiple phone numbers, then the FD

{studentID} → {phoneNumber}

does not hold for the table.

By convention, we often omit the curly braces { } for the set, and write the first functional

dependency in Example 1 as

studentID→name, DateOfBirth.

Note that the above FD can also be written equivalently into the two FDs below:

studentID → name

studentID→DateOfBirth

8.4 DATA REDUNDANCY IN FUNCTIONALDEPENDENCY

Data redundancy is a condition created within a database or data storage technology in which the same

piece of data is held in two separate places. This can mean two different fields within a single database,

or two different spots in multiple software environments or platforms. Data redundancy occurs when the

same piece of data is stored in two or more separate places and is a common occurrence in many

businesses. As more companies are moving away from siloed data to using a central repository to store

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 123 |

information, they are finding that their database is filled with inconsistent duplicates of the same entry.

Although it can be challenging to reconcile — or even benefit from — duplicate data entries,

understanding how to reduce and track data redundancy efficiently can help mitigate long-term

inconsistency issues for your business.

Sometimes data redundancy happens by accident while other times it is intentional. Accidental data

redundancy can be the result of a complex process or inefficient coding while intentional data redundancy

can be used to protect data and ensure consistency — simply by leveraging the multiple occurrences of

data for disaster recovery and quality checks. If data redundancy is intentional, it’s important to have a

central field or space for the data. This allows you to easily update all records of redundant data when

necessary.

Four major advantages of Data Redundancy:

Although data redundancy sounds like a negative event, there are many organizations that can benefit

from this process when it’s intentionally built into daily operations.

1. Alternative data backup method

Backing up data involves creating compressed and encrypted versions of data and storing it in a computer

system or the cloud. Data redundancy offers an extra layer of protection and reinforces the backup by

replicating data to an additional system. It’s often an advantage when companies incorporate data

redundancy into their disaster recovery plans.

2. Better data security

Data security relates to protecting data, in a database or a file storage system, from unwanted activities

such as cyberattacks or data breaches. Having the same data stored in two or more separate places can

protect an organization in the event of a cyberattack or breach — an event which can result in lost time

and money, as well as a damaged reputation.

3. Faster data access and updates

When data is redundant, employees enjoy fast access and quick updates because the necessary information

is available on multiple systems. This is particularly important for customer service-based organizations

whose customers expect promptness and efficiency.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 124 |

4. Improved data reliability

Data that is reliable is complete and accurate. Organizations can use data redundancy to double check

data and confirm it’s correct and completed in full — a necessity when interacting with customers,

vendors, internal staff, and others.

Although there are noteworthy advantages of intentional data redundancy, there are also several

significant drawbacks when organizations are unaware of its presence.

Possible data inconsistency

Data redundancy occurs when the same piece of data exists in multiple places, whereas data inconsistency

is when the same data exists in different formats in multiple tables. Unfortunately, data redundancy can

cause data inconsistency, which can provide a company with unreliable and/or meaningless information.

Increase in data corruption

Data corruption is when data becomes damaged as a result of errors in writing, reading, storage, or

processing. When the same data fields are repeated in a database or file storage system, data corruption

arises. If a file gets corrupted, for example, and an employee tries to open it, they may get an error message

and not be able to complete their task.

Increase in database size

Data redundancy may increase the size and complexity of a database — making it more of a challenge to

maintain. A larger database can also lead to longer load times and a great deal of headaches and

frustrations for employees as they’ll need to spend more time completing daily tasks.

Increase in cost

When more data is created due to data redundancy, storage costs suddenly increase. This can be a serious

issue for organizations who are trying to keep costs low in order to increase profits and meet their goals.

In addition, implementing a database system can become more expensive.

There are four informal measures of quality for relation schema design.

• Semantics of the attributes.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 125 |

• Reducing the redundant values in tuples.

• Reducing the null values in tuples.

• Disallowing the possibility of generating spurious tuples.

Semantics of the Relation Attributes- The easier it is to explain the semantics of the relation, the

better the relation schema design will be.

GUIDELINE 1: Design a relation schema so that it is easy to explain its meaning.Do not combine

attributes from multiple entity types and relationship types into a single relation. Intuitively, if a relation

schema corresponds to one entity type or one relationship type, the meaning tends to be clear. Otherwise,

the relation corresponds to a mixture of multiple entities and relationships and hence becomes

semantically unclear.

Example: A relation involves two entities- poor design.

EMP DEPT

ENAME SSN BDATE ADDREESS DNUMBER DNAME DMGRSSN

8.5 UPDATE ANOMALIES

Consider the two relation schemas EMP_LOCS and EMP_PROJl in Figure 8.1 a, A tuple in

EMP_LOCS means that the employee whose name is ENAME works on some project whose location is

PLOCATION.

Figure 8.1 (a): The two relation schemas EMP_LOCS and EMP_PROJ1

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 126 |

Figure 8.1 (b) The result of projecting the extension of EMP_PROJ form Figure 8.1(a) on the relations

EMP_LOCS and EMP_PROJ1

Update anomalies for base relations EMP DEPT and EMP PROJ in Figure 8.1

➢ Insertion anomalies: For EMP DEPT relation in Figure 8.1

• To insert a new employee tuple, we need to make sure that the values ofattributes DNUMBER,

DNAME, and DMGRSSN are consistent to otheremployees (tuples) in EMP DEPT.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 127 |

• It is difficult to insert a new department that has no employees as yet in theEMP DEPT

relation.

➢ Deletion anomalies: If we delete from EMP DEPT an employee tuple that happens to represent

the last employee working for a particular department, the information concerning that department

is lost from the database.

➢ Modification anomalies: If we update the value of MGRSSN in a particular department, we must

to update the tuples of all employees who work in that department; otherwise, the database will

become inconsistent.

GUIDELINE 2: Design the base relation schemas so that no insertion, deletion, or Modification

anomalies are present in the relations. If any anomalies are present, note them clearly and make sure the

programs that update the database will operate correctly. It is advisable to use anomaly-free base relations

and to specify views that include the JOINs for placing together the attributes frequently referenced to

improve the performance.

8.6 CHECK YOUR PROGRESS

1. We can use the following three rules to find logically implied functional dependencies. This

collection of rules is called

a) Axioms

b) Armstrong’s axioms

c) Armstrong

d) Closure

2. Which of the following is not Armstrong’s Axiom?

a) Reflexivity rule

b) Transitivity rule

c) Pseudotransitivity rule

d) Augmentation rule

3. The relation employee(ID,name,street,Credit,street,city,salary) is decomposed into

employee1 (ID, name)

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 128 |

employee2 (name, street, city, salary)

This type of decomposition is called

a) Lossless decomposition

b) Lossless-join decomposition

c) All of the mentioned

d) None of the mentioned

4. Inst_dept (ID, name, salary, dept name, building, budget) is decomposed into

instructor (ID, name, dept name, salary)

department (dept name, building, budget)

This comes under

a) Lossy-join decomposition

b) Lossy decomposition

c) Lossless-join decomposition

d) Both Lossy and Lossy-join decomposition

5. Suppose relation R(A,B,C,D,E) has the following functional dependencies:

A -> B

B -> C

BC -> A

A -> D

E -> A

D -> E

Which of the following is not a key?

a) A

b) E

c) B, C

d) D

8.7 SUMMARY

Functional dependency (FD) is a set of constraints between two attributes in a relation. Functional

dependency says that if two tuples have same values for attributes A1, A2,..., An, then those two tuples

must have to have same values for attributes B1, B2, ..., Bn.Functional dependency is represented by an

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 129 |

arrow sign (→) that is, X→Y, where X functionally determines Y. The left-hand side attributes determine

the values of attributes on the right-hand side. Database normalization is the process of efficiently

organizing data in a database so that redundant data is eliminated. This process can ensure that all of a

company’s data looks and reads similarly across all records. By implementing data normalization, an

organization standardizes data fields such as customer names, addresses, and phone numbers.

Normalizing data involves organizing the columns and tables of a database to make sure their

dependencies are enforced correctly. The “normal form” refers to the set of rules or normalizing data, and

a database is known as “normalized” if it’s free of delete, update, and insert anomalies. When it comes to

normalizing data, each company has their own unique set of criteria. Therefore, what one organization

believes to be “normal,” may not be “normal” for another organization. For instance, one company may

want to normalize the state or province field with two digits, while another may prefer the full name.

Regardless, database normalization can be the key to reducing data redundancy across any company.

Efficient data redundancy is possible. Many organizations like home improvement companies,

real estate agencies, and companies focused on customer interactions have customer relationship

management (CRM) systems. When a CRM system is integrated with another business software like an

accounting software that combines customer and financial data, redundant manual data is eliminated,

leading to more insightful reportsand improved customer service.Database management systems are also

used in a variety of organizations. They receive direction from a database administrator (DBA) and allow

the system to load, retrieve, or change existing data from the systems. Database management systems

adhere to the rules of normalization, which reduces data redundancy. Hospitals, nursing homes, and other

healthcare entities use database management systems to generate reports that provide useful information

for physicians and other employees. When data redundancy is efficient and does not lead to data

inconsistency, these systems can alert healthcare providers of rises in denial claim rates, how successful

a certain medication is, and other important pieces of information.

8.8 KEYWORDS

• AXIOM -Axioms is a set of inference rules used to infer all the functional dependencies on a

relational database.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 130 |

• DECOMPOSITION- It is a rule that suggests if you have a table that appears to contain two

entities which are determined by the same primary key then you should consider breaking them

up into two different tables.

• DEPENDENT - It is displayed on the right side of the functional dependency diagram.

• UNION -It suggests that if two tables are separate, and the PK is the same, you should consider

putting them. Together.

• DETERMINANT -It is displayed on the left side of the functional dependency Diagram.

5.9 SELF-ASSESSMENT TEST

1. Explain the Functional Dependency in detail.

2. Discuss how to Insert and Update anomaly in functional dependency.

3. What is the key role of Normalization?

4. How normalization and functional dependency are related to each other?

5. Discuss with example the redundancy in functional dependency.

8.10 ANSWERS TO CHECK YOUR PROGRESS

1. B

2. C

3. D

4. D

5. C

8.11 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

• https://hackr.io/blog/dbms-normalization

• https://www.guru99.com/database-normalization.html

https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/
https://hackr.io/blog/dbms-normalization
https://www.guru99.com/database-normalization.html

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 131 |

• https://www.javatpoint.com/dbms-normalization

https://www.javatpoint.com/dbms-normalization

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 132 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 9 VETTER:

NORMAL FORMS

STRUCTURE

9.0 Learning Objective

9.1 Introduction

9.2 Definition of Normalization

9.3 Decomposition

9.4 First Normal Form (1NF)

9.5 Second Normal Form (2NF)

9.6 Third Normal Form (3NF)

9.7 Boyce-Codd normal form (BCNF)

9.8 Check Your Progress

9.9 Summary

9.10 Keywords

9.11 Self-Assessment Test

9.12 Answers to check your progress

9.13 References / Suggested Readings

9.0 LEARNING OBJECTIVE

• To understand the concepts of Anomalies in Database

• Learn how to update, insert and Delete anomalies

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 133 |

• To understand the concept of Normalization in removing anomalies in database

• Study and learn decomposition methods and different forms of Normalization

9.1 INTRODUCTION

NORMALIZATION is a database design technique that reduces data redundancy and eliminates

undesirable characteristics like Insertion, Update and Deletion Anomalies. Normalization rules divides

larger tables into smaller tables and links them using relationships. The purpose of Normalization in SQL

is to eliminate redundant (repetitive) data and ensure data is stored logically.The inventor of the relational

model Edgar Codd proposed the theory of normalization with the introduction of the First Normal Form,

and he continued to extend theory with Second and Third Normal Form. Later he joined Raymond F.

Boyce to develop the theory of Boyce-Codd Normal Form.

There are three types of anomalies that occur when the database is not normalized. These are – Insertion,

update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named employee that

has four attributes: emp_id for storing employee’s id, emp_name for storing employee’s name,

emp_address for storing employee’s address and emp_dept for storing the department details in which

the employee works. At some point of time the table looks like this in table 9.1:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

Table 9.1: Un-Normalized Data in a table

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two

departments of the company. If we want to update the address of Rick then we have to update the same

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 134 |

in two rows or the data will become inconsistent. If somehow, the correct address gets updated in one

department but not in other then as per the database, Rick would be having two different addresses, which

is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and currently not

assigned to any department then we would not be able to insert the data into the table if emp_dept field

doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting

the rows that are having emp_dept as D890 would also delete the information of employee Maggie since

she is assigned only to this department.

To overcome these anomalies we need to normalize the data.

9.2 DEFINTION OF NORMALIZATION

Database Normalization is a technique that helps in designing the schema of the database in an optimal

manner so as to ensure the above points. The core idea of database normalization is to divide the tables

into smaller sub tables and store pointers to data rather than replicating it. For a better understanding of

what we just said, here is a simple DBMS Normalization example:

To understand (RDBMS)normalization in the database with example tables, let's assume that we are

supposed to store the details of courses and instructors in a university. Here is what a sample database

could look like:

Course code Course venue Instructor Name Instructor’s phone number

CS101 Lecture Hall 20 Prof. George +91 6514821924

CS152 Lecture Hall 21 Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, the data basically stores the course code, course venue, instructor name, and instructor’s phone

number. At first, this design seems to be good. However, issues start to develop once we need to modify

information. For instance, suppose, if Prof. George changed his mobile number. In such a situation, we

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 135 |

will have to make edits in 2 places. What if someone just edited the mobile number against CS101, but

forgot to edit it for CS154? This will lead to stale/wrong information in the database.

This problem, however, can be easily tackled by dividing our table into 2 simpler tables:

Table 1 (Instructor):

1. Instructor ID

2. Instructor Name

3. Instructor mobile number

Table 2 (Course):

• Course code

• Course venue

• Instructor ID

Now, our data will look like the following:

Table 1 (Instructor):

Insturctor's ID Instructor's name Instructor's number

1 Prof. George +1 6514821924

2 Prof. Atkins +1 6519272918

Table 2 (Course):

Course code Course venue Instructor ID

CS101 Lecture Hall 20 1

CS152 Lecture Hall 21 2

CS154 CS Auditorium 1

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 136 |

Basically, we store the instructors separately and in the course table, we do not store the entire data of the

instructor. We rather store the ID of the instructor. Now, if someone wants to know the mobile number

of the instructor, he/she can simply look up the instructor table. Also, if we were to change the mobile

number of Prof. George, it can be done in exactly one place. This avoids the stale/wrong data problem.

Further, if you observe, the mobile number now need not be stored 2 times. We have stored it at

just 1 place. This also saves storage. This may not be obvious in the above simple example. However,

think about the case when there are hundreds of courses and instructors and for each instructor, we have

to store not just the mobile number, but also other details like office address, email address, specialization,

availability, etc. In such a situation, replicating so much data will increase the storage requirement

unnecessarily.The above is a simplified example of how database normalization works. We will now

more formally study it.

• Normalization is the process of organizing the data in the database.

• Normalization is used to minimize the redundancy from a relation or set of relations. It is also

used to eliminate the undesirable characteristics like Insertion, Update and Deletion

Anomalies.

• Normalization divides the larger table into the smaller table and links them using relationship.

• The normal form is used to reduce redundancy from the database table.

Normalization rules are divided into the following normal forms:

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form

9.3 DECOMPOSITION

Definition. The normal form of a relation refers to the highest normal form condition that it meets, and

hence indicates the degree to which it has been normalized. Normal forms, when considered in isolation

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 137 |

from other factors, do not guarantee a good database design. It is generally not sufficient to check

separately that each relation schema in the database is, say, in BCNF or 3NF. Rather, the process of

normalization through decomposition must also confirm the existence of additional properties that the

relational schemas, taken together, should possess. These would include two properties:

• The non-additive join or lossless join property, which guarantees that the spurious tuple

generation problem does not occur with respect to the relation schemas created after

decomposition.

• The dependency preservation property, which ensures that each functional dependency is

represented in some individual relation resulting after decomposition.

In fact Normalization is carried out in practice so that the resulting designs are of high quality and

meet the desirable properties stated previously. The practical utility of these normal forms becomes

questionable when the constraints on which they are based are rare, and hard to understand or to detect

by the database designers and users who must discover these constraints. Thus, database design as

practiced in industry today pays particular attention to normalization only up to 3NF, BCNF, or at most

4NF. Another point worth noting is that the database designers need not normalize to the highest possible

normal form. Relations may be left in a lower normalization status, such as 2NF.

9.4 FIRST NORMAL FORM (1NF)

First normal form (1NF) is now considered to be part of the formal definition of a relation in the basic

(flat) relational model; historically, it was defined to disallow multivalued attributes, composite attributes,

and their combinations. It states that the domain of an attribute must include only atomic (simple,

indivisible) values and that the value of any attribute in a tuple must be a single value from the domain of

that attribute. Hence, 1NF disallows having a set of values, a tuple of values, or a combination of both as

an attribute value for a single tuple. In other words, 1NF disallows relations within relations or relations

as attribute values within tuples. The only attribute values permitted by 1NF are single atomic (or

indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure below, whose primary key is Dnumber,

and suppose that we extend it by including the Dlocations attribute as shown in Figure. We assume that

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 138 |

each department can have a number of locations.. As we can see, this is not in 1NF because Dlocations is

not an atomic attribute.

DEPARTMENT

 There are three main techniques to achieve first normal form for such a relation:

• Remove the attribute Dlocations that violates 1NF and place it in a separate relation

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The primary key

of this relation is the combination {Dnumber, Dlocation},

• Expand the key so that there will be a separate tuple in the original DEPARTMENT

 relation for each location of a DEPARTMENT,

• If a maximum number of values is known for the attribute—for example, if it is known that at most

three locations can exist for a department—replace the Dlocations attribute by three atomic

attributes: Dlocation1, Dlocation2, and Dlocation3. This solution has the disadvantage of

introducing NULL values if most departments have fewer than three locations.

Of the three solutions above, the first is generally considered best because it does not suffer from

redundancy and it is completely general, having no limit placed on a maximum number of values.

Example:

The First normal form simply says that each cell of a table should contain exactly one value. Let us take

an example. Suppose we are storing the courses that a particular instructor takes, we can store it like this:

Instructor's name Course code

Prof. George (CS101, CS154)

Prof. Atkins (CS152)

Dnumber Dname Dmgr_SSN DLocation

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 139 |

Here, the issue is that in the first row, we are storing 2 courses against Prof. George. This isn’t the optimal

way since that’s now how SQL databases are designed to be used. A better method would be to store the

courses separately. For instance:

Instructor's name Course code

Prof. George CS101

Prof. George CS154

Prof. Atkins CS152

This way, if we want to edit some information related to CS101, we do not have to touch the data

corresponding to CS154. Also, observe that each row stores unique information. There is no repetition.

This is the First Normal Form.

9.5 Second Normal Form (2NF)

Second normal form (2NF) is based on the concept of full functional dependency. A functional

dependency X → Y is a full functional dependency if removal of any attribute A from X means that the

dependency does not hold any more; that is, for any attribute A ε X, (X – {A}) does not functionally

determine Y. A functional dependency X→Y is a partial dependency if some attribute A ε X can be

removed from X and the dependency still holds; that is, for some A ε X, (X – {A}) → Y.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally

dependent on the primary key of R. The test for 2NF involves testing for functional dependencies whose

left-hand side attributes are part of the primary key. If the primary key contains a single attribute, the test

need not be applied at all.

General Definition of 2NF

A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially

dependent on any key of R.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 140 |

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a number of 2NF

relations in which nonprime attributes are associated only with the part of the primary key on which they

are fully functionally dependent. The following example shows how we can decompose a relation not in

2NF into three relations which are now in 2NF. For a table to be in second normal form, the following 2

conditions are to be met:

1. The table should be in the first normal form.

2. The primary key of the table should compose of exactly 1 column.

The first point is obviously straightforward since we just studied 1NF. Let us understand the first point -

1 column primary key. Well, a primary key is a set of columns that uniquely identifies a row. Basically,

no 2 rows have the same primary keys.

(a) Relation not in 2NF

FD1

FD2

FD3

(b) Relation decomposed in 2NF

FD1 FD2 FD3

Example:

SSN Pnumber Hours Ename Pname PLocation

SSN Pnumber Hours SSN Ename Pnumber Pname PLocation

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 141 |

Course

code

Course venue Instructor

Name

Instructor’s phone

number

CS101 Lecture Hall

20

Prof. George +91 6514821924

CS152 Lecture Hall

21

Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, in this table, the course code is unique. So, that becomes our primary key. Let us take another

example of storing student enrollment in various courses. Each student may enroll in multiple courses.

Similarly, each course may have multiple enrollments. A sample table may look like this (student name

and course code):

Student name Course code

Rahul CS152

Rajat CS101

Rahul CS154

Raman CS101

Here, the first column is the student name and the second column is the course taken by the student.

Clearly, the student name column isn’t unique as we can see that there are 2 entries corresponding to the

name ‘Rahul’ in row 1 and row 3. Similarly, the course code column is not unique as we can see that there

are 2 entries corresponding to course code CS101 in row 2 and row 4. However, the tuple (student name,

course code) is unique since a student cannot enroll in the same course more than once. So, these 2

columns when combined form the primary key for the database. As per the second normal form definition,

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 142 |

our enrollment table above isn’t in the second normal form. To achieve the same (1NF to 2NF), we can

rather break it into 2 tables:

Students:

Student name Enrolment number

Rahul 1

Rajat 2

Raman 3

Here the second column is unique and it indicates the enrollment number for the student. Clearly, the

enrollment number is unique. Now, we can attach each of these enrollment numbers with course codes.

Courses:

Course code Enrolment number

CS101 2

CS101 3

CS152 1

CS154 1

These 2 tables together provide us with the exact same information as our original table.

9.6 Third Normal Form (3NF)

Third normal form (3NF) is based on the concept of transitive dependency. A functional dependency

X→Y in a relation schema R is a transitive dependency if there exists a set of attributes Z in R that is

neither a candidate key nor a subset of any key of R, and both X→Z and Z→Y hold.

Definition. According to Codd’s original definition, a relation schema R is in 3NF if it satisfies 2NF and

no nonprime attribute of R is transitively dependent on the primary key.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 143 |

 The relation schema EMP_DEPT in Figure (a) below is in 2NF, since no partial dependencies

on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of

Dmgr_Adhar_No. (and also Dname) on Adhar_No. via Dnumber. We can normalize EMP_DEPT by

decomposing it into the two 3NF relation schemas shown in Figure (b). Intuitively, we see that the two

relations represent independent entity facts about employees and departments :

(a)

FD1

 FD2

(b)

FD1 FD2

General Definition

Definition. A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional

dependency X→A holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R. A relation

schema R violates the general definition of 3NF if a functional dependency X → A holds in R that does

not meet either condition—meaning that it violates

both conditions (a) and (b) of 3NF. This can occur due to two types of problematic functional

dependencies:

■ A nonprime attribute determines another nonprime attribute. Here we typically have a transitive

dependency that violates 3NF.

■ A proper subset of a key of R functionally determines a nonprime attribute.

Ename Adhar_no BDate Address Dnumber Dname Dmgr_Adhar_no

Ename Adhar_no Bdate Address Dnumber Dnumber Dname Dmgr_Adhar_no

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 144 |

Here we have a partial dependency that violates 3NF (and also 2NF). Therefore, we can state a general

alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute of R meets both of the

following conditions:

■ It is fully functionally dependent on every key of R.

■ It is nontransitively dependent on every key of R.

Example:

➢ Before we delve into details of third normal form, let us again understand the concept of a

functional dependency on a table. Column A is said to be functionally dependent on column B if

changing the value of A may require a change in the value of B. As an example, consider the

following table:

Course

code

Course venue Instructor's

name

Department

MA214 Lecture Hall 18 Prof. George CS Department

ME112 Auditorium

building

Prof. John Electronics

Department

Here, the department column is dependent on the professor name column. This is because if in a particular

row, we change the name of the professor, we will also have to change the department value. As an

example, suppose MA214 is now taken by Prof. Ronald who happens to be from the Mathematics

department, the table will look like this:

Course

code

Course venue Instructor's

name

Department

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 145 |

MA214 Lecture Hall 18 Prof. Ronald Mathematics

Department

ME112 Auditorium

building

Prof. John Electronics Department

Here, when we changed the name of the professor, we also had to change the department column. This is

not desirable since someone who is updating the database may remember to change the name of the

professor, but may forget updating the department value. This can cause inconsistency in the database.

Third normal form avoids this by breaking this into separate tables:

Course code Course venue Instructor's ID

MA214 Lecture Hall 18 1

ME112 Auditorium building, 2

Here, the third column is the ID of the professor who’s taking the course.

Instructor's ID Instructor's Name Department

1 Prof. Ronald Mathematics Department

2 Prof. John Electronics Department

Here, in the above table, we store the details of the professor against his/her ID. This way, whenever we

want to reference the professor somewhere, we don’t have to put the other details of the professor in that

table again. We can simply use the ID.

Therefore, in the third normal form, the following conditions are required:

• The table should be in the second normal form.

• There should not be any functional dependency.

9.7 Boyce-Codd Normal Form (BCNF)

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 146 |

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found to be stricter

than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily

in BCNF.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional dependency X→A holds

in R, then X is a superkey of R. The formal definition of BCNF differs from the definition of 3NF in that

condition (b) of 3NF, which allows A to be prime, is absent from BCNF. That makes BCNF a stronger

normal form compared to 3NF. In practice, most relation schemas that are in 3NF are also in BCNF. Only

if X→A holds in a relation schema R with X not being a superkey and A being a prime attribute will R be

in 3NF but not in BCNF. Consider an example which shows a relation TEACH with the following

dependencies:

FD1: {Student, Course} → Teacher

FD2: Teacher→ Course

Student Course Teacher

 Neeraj DBMS H K Lal

Saroj Operating System P K Sharma

Saroj DBMS Radhe Shyam

Saroj Autometa M K Gupta

Shikha DBMS H K Lal

Shikha Operating System RajNath

The relation is in 3NF but not in BCNF

Boyce-Codd Normal form is a stronger generalization of third normal form. A table is in Boyce-Codd

Normal form if and only if at least one of the following conditions are met for each functional dependency

A → B:

• A is a superkey

• It is a trivial functional dependency.

A B C

FD1

FD2

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 147 |

Let us first understand what a superkey means. To understand BCNF in DBMS, consider the following

BCNF example table:

Course

code

Course venue Instructor Name Instructor’s phone

number

CS101 Lecture Hall 20 Prof. George +91 6514821924

CS152 Lecture Hall 21 Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, the first column (course code) is unique across various rows. So, it is a superkey. Consider the

combination of columns (course code, professor name). It is also unique across various rows. So, it is also

a superkey. A superkey is basically a set of columns such that the value of that set of columns is unique

across various rows. That is, no 2 rows have the same set of values for those columns. Some of the

superkeys for the table above are:

• Course code

• Course code, professor name

• Course code, professor mobile number

A superkey whose size (number of columns) is the smallest is called as a candidate key. For instance, the

first superkey above has just 1 column. The second one and the last one have 2 columns. So, the first

superkey (Course code) is a candidate key.

Boyce-Codd Normal Form says that if there is a functional dependency A → B, then either A is a superkey

or it is a trivial functional dependency. A trivial functional dependency means that all columns of B are

contained in the columns of A. For instance, (course code, professor name) → (course code) is a trivial

functional dependency because when we know the value of course code and professor name, we do know

the value of course code and so, the dependency becomes trivial.

Let us understand what’s going on:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 148 |

A is a superkey: this means that only and only on a superkey column should it be the case that there is a

dependency of other columns. Basically, if a set of columns (B) can be determined knowing some other

set of columns (A), then A should be a superkey. Superkey basically determines each row uniquely.

It is a trivial functional dependency: this means that there should be no non-trivial dependency. For

instance, we saw how the professor’s department was dependent on the professor’s name. This may create

integrity issues since someone may edit the professor’s name without changing the department. This may

lead to an inconsistent database. There are also 2 other normal forms:

9.8 CHECK YOUR PROGRESS

1. If F is a set of functional dependencies, then the closure of F is denoted by?

a) F*

b) Fo

c) F+

d) F

2. In the_________ normal form, a composite attribute is converted to individual attributes.

A. First

B. Second

C. Third

D. Fourth

3. Table in 2NF eliminated _______________.

4. Functional dependencies are the types of constraints that are based on________.

5. ____________ is the bottom up approach to database design that design by examining the

relationship between attributes.

9.9 SUMMARY

Normalization of data can be considered a process of analyzing the given relation schemas based on

their FDs and primary keys to achieve the desirable properties of (1) minimizing redundancy and (2)

minimizing the insertion, deletion, and update anomalies. It can be considered as a “filtering” or

“purification” process to make the design have successively better quality. Unsatisfactory relation

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 149 |

schemas that do not meet certain conditions—the normal form tests—are decomposed into smaller

relation schemas that meet the tests and hence possess the

desirable properties. Thus, the normalization procedure provides database designers with the following:

■ A formal framework for analyzing relation schemas based on their keys and on the functional

dependencies among their attributes.

■ A series of normal form tests that can be carried out on individual relation schemas so that the relational

database can be normalized to any desired degree.

Database Normalization is a technique of organizing the data in the database. Normalization is a

systematic approach of decomposing tables to eliminate data redundancy(repetition) and undesirable

characteristics like Insertion, Update and Deletion Anomalies. It is a multi-step process that puts data into

tabular form, removing duplicated data from the relation tables. Normalization is used for mainly two

purposes,

• Eliminating redundant(useless) data.

• Ensuring data dependencies make sense i.e data is logically stored.

9.10 KEYWORDS

• SUPERKEY: A superkey is a set of attributes within a table whose values can be used to uniquely

identify a tuple. A candidate key is a minimal set of attributes necessary to identify a tuple; this is

also called a minimal superkey.

• ANOMALY: Anomalies are problems that can occur in poorly planned, un-normalised databases

where all the data is stored in one table (a flat-file database).

• CANDIDATE KEY: Primary Key is a unique and non-null key which identify a record uniquely

in table. A table can have only one primary key. Candidate key is also a unique key to identify a

record uniquely in a table but a table can have multiple candidate keys

• 4NF: Fourth normal form (4NF): Fourth normal form (4NF) is a level of database normalization

where there are no non-trivial multivalued dependencies other than a candidate key. It builds on

the first three normal forms (1NF, 2NF and 3NF) and the Boyce-Codd Normal Form (BCNF).

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 150 |

• 5NF: Fifth normal form (5NF), also known as project-join normal form (PJ/NF), is a level of

database normalization designed to reduce redundancy in relational databases recording multi-

valued facts by isolating semantically related multiple relationships.

9.11 SELF-ASSESSMENT TEST

1. Explain why normalization is needed?

2. What are anomalies in a database? How we handle them?

3. Discuss 3NF in detail.

4. Which forms has a relation that possesses data about an individual entity? Explain

5. Which forms are based on the concept of functional dependency?

9.12 ANSWERS TO CHECK YOUR PROGRESS

1. C

2. A

3. All hidden dependencies

4. Key

5. Normalization

9.13 REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

• https://www.tutorialspoint.com/dbms/database_normalization.htm

• https://www.guru99.com/database-normalization.html

• https://www.studytonight.com/dbms/database-normalization.php

• https://www.javatpoint.com/dbms-normalization

https://www.tutorialspoint.com/dbms/database_normalization.htm
https://www.guru99.com/database-normalization.html
https://www.studytonight.com/dbms/database-normalization.php
https://www.javatpoint.com/dbms-normalization

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 151 |

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 152 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 10 VETTER:

CONCURRENCY CONTROL TECHNIQUES

STRUCTURE

10.0 Learning Objective

10.1Introduction

10.2Definition

10.3Overview of Database Transactions

10.4Transaction States

10.5 ACID Properties of a Transaction

10.6Transaction Recovery

10.7 Check Your Progress

10.8 Summary

10.9 Keywords

10.10 Self-Assessment Test

10.11 Answers to check your progress

10.12 References / Suggested Readings

10.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the meaning, and concept of

Concurrency Control Techniques. To know the transaction states and properties of all the

transactions states as well as the recovery methods in transactions.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 153 |

10.1 INTRODUCTION

Concurrency Control deals with interleaved execution of more than one transaction. In the next article,

we will see what serializability is and how to find whether a schedule is serializable or not.Concurrent

access is quite easy if all users are just reading data. There is no way they can interfere with one another.

Though for any practical Database, it would have a mix of READ and WRITE operations and hence the

concurrency is a challenge.

DBMS Concurrency Control is used to address such conflicts, which mostly occur with a multi-user

system. Therefore, Concurrency Control is the most important element for proper functioning of a

Database Management System where two or more database transactions are executed simultaneously,

which require access to the same data.

Reasons for using Concurrency control method is DBMS:

• To apply Isolation through mutual exclusion between conflicting transactions

• To resolve read-write and write-write conflict issues

• To preserve database consistency through constantly preserving execution obstructions

• The system needs to control the interaction among the concurrent transactions. This control is

achieved using concurrent-control schemes.

• Concurrency control helps to ensure serializability

For Example, Assume that two people who go to electronic kiosks at the same time to buy a movie ticket

for the same movie and the same show time.

However, there is only one seat left in for the movie show in that particular theatre. Without concurrency

control in DBMS, it is possible that both moviegoers will end up purchasing a ticket. However,

concurrency control method does not allow this to happen. Both moviegoers can still access information

written in the movie seating database. But concurrency control only provides a ticket to the buyer who

has completed the transaction process first.

10.2 DEFINITION

Concurrency Control-Concurrency Control in Database Management System is a procedure of

managing simultaneous operations without conflicting with each other. It ensures that Database

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 154 |

transactions are performed concurrently and accurately to produce correct results without violating data

integrity of the respective Database.

Transaction-A set of logically related operations is known as transaction.

10.3 OVERVIEW OF DATABASE TRANSACTIONS

Transaction is a logical unit of work that represents real-world events of any organisation or an enterprise

whereas concurrency control is the management of concurrent transaction execution. Transaction

processing systems execute database transactions with large databases and hundreds of concurrent users,

for example, railway and air reservations systems, banking system, credit card processing, stock market

monitoring, super market inventory and checkouts and so on.

A transaction is a logical unit of work of database processing that includes one or more database access

operations.

A transaction can be defined as an action or series of actions that is carried out by a single user or

application program to perform operations for accessing the contents of the database. The operations can

include retrieval, (Read), insertion (Write), deletion and modification. A transaction must be either

completed or aborted.

It can either be embedded within an application program or can be specified interactively via a high-level

query language such as SQL. Its execution preserves the consistency of the database. Each transaction

should access shared data without interfering with the other transactions and whenever a transaction

successfully completes its execution; its effect should be permanent. This basic abstraction frees the

database application programmer from the following concerns:

• Inconsistencies caused by conflicting updates from concurrent users.

• Partially completed transactions in the event of systems failure.

• User-directed undoing of transactions.

10.4 TRANSACTION STATES

A transaction is a sequence of READ and WRITE actions that are grouped together to from a database

access. A transaction may consist of a simple SELECT operation to generate a list of table contents, or it

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 155 |

may consist of a series of related UPDATE command sequences.

A transaction can include the following basic database access operations:

 Operations Descriptions

Retrive To retrive data stored ina database.

Insert To store new data in database.

Delete To delete existing data from database.

Update To modify existing data in database.

Commit To save the work done permanently.

Rollback To undo the work done.

Transaction that changes the contents of the database must alter the database from one consistent state to

another. A consistent database state is one in which all data integrity constraints are satisfied. To ensure

database consistency, every transaction must begin with

the database in a known consistent state.

Transaction Execution and Problems:

A transaction which successfully completes its execution is said to have been committed. Otherwise, the

transaction is aborted.Thus, if a committed transaction performs any update operation on the database, its

effect must be reflected on the database even if there is a failure.

10.4 TRANSACTION STATES

States through which a transaction goes during its lifetime. These are the states which tell about the current

state of the Transaction and also tell how we will further do processing we will do on the transactions.

These states govern the rules which decide the fate of the transaction whether it will commit or abort

figure 10.1.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 156 |

A transaction can be in one of the following states:

State Description

Active state A transaction goes into an active state immediately after it starts execution,

where it can issue READ and WRITE operations.

A transaction may be aborted when the transaction itself detects an error during

execution which it cannot recover from, for example, a transaction trying to debit

loan amount of an employee from his insufficient gross salary. A transaction

may also be aborted before it has been committed due to system failure or any

other circumstances beyond its control.

Partially

committed

When the transaction ends, it moves to the partially committed state.When the

last state is reached.

To this point, some recovery protocols need to ensure that a system failure will

not result in an inability to record the changes of the transaction permanently.

Once this check is successful, the transaction is said to have reached its commit

point and enters the committed state.

Aborted When the normal execution can no longer be performed.

Failed or aborted transactions may be restarted later, either automatically or after

being resubmitted by the user as new transactions.

Committed After successful completion of transaction.

A transaction is said to be in a committed state if it has partially committed and it

can be ensured that it will never be aborted.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 157 |

Figure 10.1: Transaction States

10.5 ACID PROPERTIES OF A TRANSACTION

A transaction is a single logical unit of work which accesses and possibly modifies the contents of a

database. Transactions access data using read and write operations. In order to maintain consistency in a

database, before and after the transaction, certain properties are followed. These are called ACID

properties.

• Atomicity-

By this, we mean that either the entire transaction takes place at once or doesn’t happen at all.

There is no midway i.e. transactions do not occur partially. Each transaction is considered as one

unit and either runs to completion or is not executed at all. It involves the following two operations.

o Abort: If a transaction aborts, changes made to database are not visible.

o Commit: If a transaction commits, changes made are visible.

• Consistency-

This means that integrity constraints must be maintained so that the database is consistent before

and after the transaction. It refers to the correctness of a database. Referring to the example

above,the total amount before and after the transaction must be maintained.

• Isolation-

This property ensures that multiple transactions can occur concurrently without leading to the

inconsistency of database state. Transactions occur independently without interference. Changes

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 158 |

occurring in a particular transaction will not be visible to any other transaction until that particular

change in that transaction is written to memory or has been committed. This property ensures that

the execution of transactions concurrently will result in a state that is equivalent to a state achieved

these were executed serially in some order.

• Durability-

This property ensures that once the transaction has completed execution, the updates and

modifications to the database are stored in and written to disk and they persist even if a system

failure occurs. These updates now become permanent and are stored in non-volatile memory. The

effects of the transaction, thus, are never lost.

The ACID properties, in totality, provide a mechanism to ensure correctness and consistency of a

database in a way such that each transaction is a group of operations that acts a single unit, produces

consistent results, acts in isolation from other operations and updates that it makes are durably stored.

One of the easiest ways to describe a database transaction is that it is any change in a database, any

“transaction” between the database components and the data fields that they contain.

However, the terminology becomes confusing, because in enterprise as a whole, people are so used to

referring to financial transactions as simply “transactions.” That sets up a central conflict in tech-speak

versus the terminology of the average person.

A database “transaction” is any change that happens. To talk about handling financial transactions in

database environments, the word “financial” should be used explicitly. Otherwise, confusion can easily

crop up. Database systems will need specific features, such as PCI compliance features, in order to handle

financial transactions specifically.

As databases have evolved, transaction handling systems have also evolved. A new kind of database

called NoSQL is one that does not depend on the traditional relational database data relationships to

operate.

While many NoSQL systems offer ACID compliance, others utilize processes like snapshot isolation or

may sacrifice some consistency for other goals. Experts sometimes talk about a trade-off between

consistency and availability, or similar scenarios where consistently may be treated differently by modern

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 159 |

database environments. This type of question is changing how stakeholders look at database systems,

beyond the traditional relational database paradigms.

10.6 TRANSACTION RECOVERY

Database systems, like any other computer system, are subject to failures but the data stored in it must be

available as and when required. When a database fails it must possess the facilities for fast recovery. It must

also have atomicity i.e. either transactions are completed successfully and committed (the effect is recorded

permanently in the database) or the transaction should have no effect on the database.

There are both automatic and non-automatic ways for both, backing up of data and recovery from any failure

situations. The techniques used to recover the lost data due to system crash, transaction errors, viruses,

catastrophic failure, incorrect commands execution etc. are database recovery techniques. So to prevent data

loss recovery techniques based on deferred update and immediate update or backing up data can be used.

Recovery techniques are heavily dependent upon the existence of a special file known as a system log. It

contains information about the start and end of each transaction and any updates which occur in

the transaction. The log keeps track of all transaction operations that affect the values of database items.

This information is needed to recover from transaction failure.

• The log is kept on disk start_transaction(T): This log entry records that transaction T starts the

execution.

• read_item(T, X): This log entry records that transaction T reads the value of database item X.

• write_item(T, X, old_value, new_value): This log entry records that transaction T changes the value

of the database item X from old_value to new_value. The old value is sometimes known as a before

an image of X, and the new value is known as an afterimage of X.

• commit(T): This log entry records that transaction T has completed all accesses to the database

successfully and its effect can be committed (recorded permanently) to the database.

• abort(T): This records that transaction T has been aborted.

• checkpoint: Checkpoint is a mechanism where all the previous logs are removed from the system

and stored permanently in a storage disk. Checkpoint declares a point before which the DBMS was

in consistent state, and all the transactions were committed.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 160 |

A transaction T reaches its commit point when all its operations that access the database have been executed

successfully i.e. the transaction has reached the point at which it will not abort (terminate without

completing). Once committed, the transaction is permanently recorded in the database. Commitment always

involves writing a commit entry to the log and writing the log to disk. At the time of a system crash, item is

searched back in the log for all transactions T that have written a start_transaction(T) entry into the log but

have not written a commit(T) entry yet; these transactions may have to be rolled back to undo their effect

on the database during the recovery process

• Undoing – If a transaction crashes, then the recovery manager may undo transactions i.e. reverse

the operations of a transaction. This involves examining a transaction for the log entry write_item(T,

x, old_value, new_value) and setting the value of item x in the database to old-value.There are two

major techniques for recovery from non-catastrophic transaction failures: deferred updates and

immediate updates.

• Deferred update – This technique does not physically update the database on disk until a

transaction has reached its commit point. Before reaching commit, all transaction updates are

recorded in the local transaction workspace. If a transaction fails before reaching its commit point,

it will not have changed the database in any way so UNDO is not needed. It may be necessary to

REDO the effect of the operations that are recorded in the local transaction workspace, because their

effect may not yet have been written in the database. Hence, a deferred update is also known as

the No-undo/redo algorithm

• Immediate update – In the immediate update, the database may be updated by some operations

of a transaction before the transaction reaches its commit point. However, these operations are

recorded in a log on disk before they are applied to the database, making recovery still possible. If

a transaction fails to reach its commit point, the effect of its operation must be undone i.e. the

transaction must be rolled back hence we require both undo and redo. This technique is known

as undo/redo algorithm.

• Caching/Buffering – In this one or more disk pages that include data items to be updated are

cached into main memory buffers and then updated in memory before being written back to disk. A

collection of in-memory buffers called the DBMS cache is kept under control of DBMS for holding

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 161 |

these buffers. A directory is used to keep track of which database items are in the buffer. A dirty bit

is associated with each buffer, which is 0 if the buffer is not modified else 1 if modified.

• Shadow paging – It provides atomicity and durability. A directory with n entries is constructed,

where the ith entry points to the ith database page on the link. When a transaction began executing

the current directory is copied into a shadow directory. When a page is to be modified, a shadow

page is allocated in which changes are made and when it is ready to become durable, all pages that

refer to original are updated to refer new replacement page.

10.7CHECK YOUR PROGRESS

1. A _________ consists of a sequence of query and update statements.

2. Which of the following makes the transaction permanent in the database?

A. View

B. Commit

C. Rollback

D. Flashback

3. In case of any shut down during transaction before commit ______ is done automatically.

4. In order to maintain the consistency during transactions database provides_______>

5. A transaction completes its execution is said to be _________.

10.8 SUMMARY

Concurrency control is a database management systems (DBMS) concept that is used to address occur

with a multi-user system. Concurrency control, when applied to a DBMS, is meant to coordinate

simultaneous transactions while preserving data integrity. The Concurrency is about to control the multi-

user access of Database. When more than one transactions are running simultaneously there are chances

of a conflict to occur which can leave database to an inconsistent state. To handle these conflicts we need

concurrency control in DBMS, which allows transactions to run simultaneously but handles them in such

a way so that the integrity of data remains intact.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 162 |

Different concurrency control protocols offer different benefits between the amount of concurrency they

allow and the amount of overhead that they impose. Following are the Concurrency Control techniques

in DBMS:

• Lock-Based Protocols

• Two Phase Locking Protocol

• Timestamp-Based Protocols

• Validation-Based Protocols

10.9 KEYWORDS

• Failed state- If a transaction is executing and a failure occurs, either a hardware failure or a

software failure then the transaction goes into failed state from the active state.

• Transaction- Transaction is a set of statements which performs tasks like accessing the data or

probably update it, within the DBMS.

• Abort: If a transaction aborts, changes made to database are not visible.

• Commit: If a transaction commits, changes made are visible.

• Starvation-Starvation or Livelock is the situation when a transaction has to wait for a indefinite

period of time to acquire a lock.

10.10SELF-ASSESSMENT TEST

1. Explain the concurrency control techniques in DBMS?

2. Explain the term Transaction in DBMS.

3. What are the different transaction states?

4. Discuss the ACID Properties in detail.

5. What are the feasible threats to a Database? Discuss the importance and need of recovery during

transactions.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 163 |

10.11ANSWERS TO CHECK YOUR PROGRESS

1. Transaction

2. C

3. Rollback

4. Atomic

5. Commited

10.12REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://tutorialink.com/dbms/introduction-to-transaction-concepts.dbms

• https://www.techopedia.com/definition/16455/transaction-databases

• https://www.geeksforgeeks.org/transaction-states-in-dbms/

• https://www.javatpoint.com/dbms-states-of-transaction

• https://beginnersbook.com/2018/12/dbms-transaction-states/

https://tutorialink.com/dbms/introduction-to-transaction-concepts.dbms
https://www.techopedia.com/definition/16455/transaction-databases
https://www.geeksforgeeks.org/transaction-states-in-dbms/
https://www.javatpoint.com/dbms-states-of-transaction
https://beginnersbook.com/2018/12/dbms-transaction-states/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 164 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 11 VETTER:

LOCKING AND RECOVERY TECHNIQUES IN CENTRALIZED

DBMS

STRUCTURE

11.0 Learning Objective

11.1Introduction

11.2Definition

11.3 Locking Methods of Concurrency Control

11.4Timestamp Ordering

11.5Multi version Techniques

11.6Deadlock

11.7Recovery Techniques

11.8 Check Your Progress

11.9 Summary

11.10 Keywords

11.11 Self-Assessment Test

11.12 Answers to check your progress

11.13 References / Suggested Readings

11.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the Locking methods of

concurrency control, to know the importance of timestamp ordering. Discuss the deadlock in

the systems and how to recover from it.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 165 |

11.1 INTRODUCTION

Transaction processing systems usually allow multiple transactions to run concurrently. By allowing

multiple transactions to run concurrently will improve the performance of the system in terms of increased

throughout or improved response time, but this allows causes several complications with consistency of

the data. Ensuring consistency in spite of concurrent execution of transaction require extra work, which

is performed by the concurrency controller system of DBMS.

What is Lock?

A lock is a variable associated with a data item that describes the status of the item with respect to

possible operations that can be applied to it. Generally, there is one lock for each data item in

the database. Locks are used as a means of synchronizing the access by concurrent transactions to the

database item.

Types of Locks

Several types of locks are used in concurrency control. To introduce locking concepts gradually, we first

discuss binary locks, which are simple but restrictive and so are not used in practice. We then discuss

shared/exclusive locks, which provide more general locking capabilities and are used in practical

database locking schemes.

• Binary Locks

A binary lock can have two states or values: locked and unlocked.A distinct lock is associated with each

database item A. If the value of the lock on A is 1, item A cannot be accessed by a database operation

that requests the item. If the value of the lock on A is 0 then item can be accessed when requested. We

refer to the current value of the lock associated with item A as LOCK (A). There are two operations, lock

item and unlock item are used with binary locking A transaction requests access to an item A by first

issuing a lock item (A) operation. If LOCK (A) = 1, the transaction is forced to wait. If LOCK (A) = 0 it

is set to 1 (the transaction locks the item) and the transaction is allowed to access item A. When the

transaction is through using the item, it issues an unlock item (A) operation, which sets LOCK (A) to 0

(unlocks the item) so that A may be accessed by other transactions. Hence binary lock enforces mutual

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 166 |

exclusiol1 on the data item.

Rules of Binary Locks

If the simple binary locking scheme described here is used, every transaction must obey the following

rules:

1. A transaction must issue the operation lock_item (A) before any read_item (A) or write, item

operations are performed in T.

2. A transaction T must issue the operation unlock_item (A) after all read_item (A)

and write_item (A) operations are completed in T.

3. A transaction T will not issue a lock _item (A) operation if it already holds the lock on

Item A.

4. A transaction T will not issue an unlock _item (A) operation unless it already holds the lock on

item A.

5. The lock manager module of the DBMS can enforce these rules. Between the Lock_item

(A) and unlock_item (A) operations in transaction T, is said to hold the lock on item A. At most

one transaction can hold the lock on a particular item. Thus no two transactions can access the’

same item concurrently.

Disadvantages of Binary Locks

As discussed earlier, binary locking scheme is too restrictive for database items, because at most one

transaction can hold a lock on a given item. So, binary locking system cannot be used for practical

purpose.

Share/Exclusive (for Read/Write) Locks

We should allow several transactions to access the same item A if they all access A’ for reading purposes

only. However, if a transaction is to write an item A, it must have exclusive access to A. For this purpose,

a different type of lock called a multiple-mode lock is used. In this scheme there are shared/exclusive or

read/write locks are used.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 167 |

Locking operations

There are three locking operations called read_lock(A), write_lock(A) and unlock(A) represented as

lock-S(A), lock-X(A), unlock(A) (Here, S indicates shared lock, X indicates exclusive lock)can be

performed on a data item. A lock associated with an item A, LOCK (A), now has three possible states:

“read-locked”, “write-locked,” or “unlocked.” A read-locked item is also called share-locked item

because other transactions are allowed to read the item, whereas a write-locked item is caused exclusive-

locked, because a single transaction exclusively holds the lock on the item.

Compatibility of Locks

Suppose that there are A and B two different locking modes. If a transaction T1 requests a lock of mode

on item Q on which transaction T2 currently hold a lock of mode B. If transaction can be granted lock,

in spite of the presence of the mode B lock, then we say mode A is compatible with mode B. Such a

function is shown in one matrix as shown below:

The graphs shows that if two transactions only read the same data object they do not conf1ict, but if one

transaction writes a data object and another either read or write the same data object, then they conflict

with each other. A transaction requests a shared lock on data item Q by executing the lock-S(Q)

instruction. Similarly, an exclusive lock is requested through the lock- X(Q) instruction. A data item Q

can be unlocked via the unlock(Q) instruction.

To access a data item, transaction T1 must first lock that item. If the data item is already locked by

another transaction in an incompatible mode, the concurrency control manager will not grant the lock

until all incompatible locks held by other transactions have been released. Thus, T1 is made to wait until

all incompatible locks held by other transactions have been released.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 168 |

11.2 DEFINITION

Concurrency Control-Concurrency control is provided in a database to:

1. Enforce isolation among transactions.

2. Preserve database consistency through consistency preserving execution of transactions.

3. Resolve read-write and write-read conflicts.

Various concurrency control techniques are:

1. Two-phase locking Protocol

2. Time stamp ordering Protocol

3. Multi version concurrency control

4. Validation concurrency control

11.3 LOCKING METHODS OF CONCURRENECY CONTROL

Locking is an operation which secures: permission to read, OR permission to write a data item. Two phase

locking is a process used to gain ownership of shared resources without creating the possibility of

deadlock.

The 3 activities taking place in the two phase update algorithm are:

1. Lock Acquisition

2. Modification of Data

3. Release Lock

Two phase locking prevents deadlock from occurring in distributed systems by releasing all the resources

it has acquired, if it is not possible to acquire all the resources required without waiting for another process

to finish using a lock. This means that no process is ever in a state where it is holding some shared

resources, and waiting for another process to release a shared resource which it requires. This means that

deadlock cannot occur due to resource contention.

A transaction in the Two Phase Locking Protocol can assume one of the 2 phases:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 169 |

(i) Growing Phase:

In this phase a transaction can only acquire locks but cannot release any lock. The point when a transaction

acquires all the locks it needs is called the Lock Point.

(ii) Shrinking Phase:

In this phase a transaction can only release locks but cannot acquire any.

Basically locking in DBMS can be defined as:

"A lock is a variable, associated with the data item, which controls the access of that data item."

Locking is the most widely used form of the concurrency control. Locks are further divided into three

fields:

1. Lock Granularity

2. Lock Types

3. Deadlocks

1. Lock Granularity:

A database is basically represented as a collection of named data items. The size of the data item chosen

as the unit of protection by a concurrency control program is called GRANULARITY. Locking can take

place at the following level:

• Database level.

• Table level.

• Page level.

• Row (Tuple) level.

• Attributes (fields) level.

i) Database level Locking :

At database level locking, the entire database is locked. Thus, it prevents the use of any tables in the

database by transaction T2 while transaction T1 is being executed. Database level of locking is suitable

for batch processes. Being very slow, it is unsuitable for on-line multi-user DBMSs.

ii) Table level Locking :

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 170 |

At table level locking, the entire table is locked. Thus, it prevents the access to any row (tuple) by

transaction T2 while transaction T1 is using the table. if a transaction requires access to several tables,

each table may be locked. However, two transactions can access the same database as long as they access

different tables. Table level locking is less restrictive than database level. Table level locks are not

suitable for multi-user DBMS

iii) Page level Locking :

At page level locking, the entire disk-page (or disk-block) is locked. A page has a fixed size such as 4 K,

8 K, 16 K, 32 K and so on. A table can span several pages, and a page can contain several rows (tuples)

of one or more tables. Page level of locking is most suitable for multi-user DBMSs.

iv) Row (Tuple) level Locking :

At row level locking, particular row (or tuple) is locked. A lock exists for each row in each table of the

database. The DBMS allows concurrent transactions to access different rows of the same table, even if

the rows are located on the same page. The row level lock is much less restrictive than database level,

table level, or page level locks. The row level locking improves the availability of data. However, the

management of row level locking requires high overhead cost.

v) Attributes (fields) level Locking :

At attribute level locking, particular attribute (or field) is locked. Attribute level locking allows

concurrent transactions to access the same row, as long as they require the use of different attributes

within the row. The attribute level lock yields the most flexible multi-user data access. It requires a high

level of computer overhead.

2. Lock Types :

The DBMS mainly uses following types of locking techniques.

• Binary Locking

• Shared / Exclusive Locking

• Two - Phase Locking (2PL)

a. Binary Locking:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 171 |

A binary lock can have two states or values: locked and unlocked (or 1 and 0, for simplicity). A distinct

lock is associated with each database item X.

 If the value of the lock on X is 1, item X cannot be accessed by a database operation that requests the

item. If the value of the lock on X is 0, the item can be accessed when requested. We refer to the current

value (or state) of the lock associated with item X as LOCK(X).

Two operations, lock_item and unlock_item, are used with binary locking.

Lock_item(X):

A transaction requests access to an item X by first issuing a lock_item(X) operation. If LOCK(X) = 1,

the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the

transaction is allowed to access item X.

Unlock_item (X):

When the transaction is through using the item, it issues an unlock_item(X) operation, which sets

LOCK(X) to 0 (unlocks the item) so that X may be accessed by other transactions. Hence, a binary lock

enforces mutual exclusion on the data item; i.e., at a time only one transaction can hold a lock.

b. Shared / Exclusive Locking:

Shared lock:

These locks are reffered as read locks, and denoted by 'S'.

If a transaction T has obtained Shared-lock on data item X, then T can read X, but cannot write X.

Multiple Shared lock can be placed simultaneously on a data item.

Exclusive lock:

These Locks are referred as Write locks, and denoted by 'X'.

If a transaction T has obtained Exclusive lock on data item X, then T can be read as well as write X.

Only one Exclusive lock can be placed on a data item at a time. This means multipls transactions does

not modify the same data simultaneously.

 c. Two-Phase Locking (2PL):

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 172 |

Two-phase locking (also called 2PL) is a method or a protocol of controlling concurrent processing in

which all locking operations precede the first unlocking operation. Thus, a transaction is said to follow

the two-phase locking protocol if all locking operations (such as read_Lock, write_Lock) precede the

first unlock operation in the transaction. Two-phase locking is the standard protocol used to maintain

level 3 consistency 2PL defines how transactions acquire and relinquish locks. The essential discipline

is that after a transaction has released a lock it may not obtain any further locks. 2PL has the following

two phases:

A growing phase, in which a transaction acquires all the required locks without unlocking any data.

Once all locks have been acquired, the transaction is in its locked

point.

A shrinking phase, in which a transaction releases all locks and cannot obtain any new lock.

A transaction shows Two-Phase Locking technique.

Time Transaction Remarks

t0 Lock - X (A) acquire Exclusive lock on A.

t1 Read A read original value of A

t2 A = A - 100 subtract 100 from A

t3 Write A write new value of A

t4 Lock - X (B) acquire Exclusive lock on B.

t5 Read B read original value of B

t6 B = B + 100 add 100 to B

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 173 |

t7 Write B write new value of B

t8 Unlock (A) release lock on A

t9 Unock (B) release lock on B

11.4 TIMESTAMP ORDERING

Concurrency Control can be implemented in different ways. One way to implement it is by using Locks.

Now, lets discuss about Time Stamp Ordering Protocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify a transaction. They

are usually assigned in the order in which they are submitted to the system. Refer to the timestamp of a

transaction T as TS(T). For basics of Timestamp you may refer here.

Timestamp Ordering Protocol –

The main idea for this protocol is to order the transactions based on their Timestamps. A schedule in which

the transactions participate is then serializable and the only equivalent serial schedule permitted has the

transactions in the order of their Timestamp Values. Stating simply, the schedule is equivalent to the

particular Serial Order corresponding to the order of the Transaction timestamps. Algorithm must ensure

that, for each items accessed by Conflicting Operations in the schedule, the order in which the item is

accessed does not violate the ordering. To ensure this, use two Timestamp Values relating to each database

item X.

• W_TS(X) is the largest timestamp of any transaction that executed write(X) successfully.

• R_TS(X) is the largest timestamp of any transaction that executed read(X) successfully.

Basic Timestamp Ordering –

Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old transaction

Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such that TS(Ti) < TS(Tj).The

protocol manages concurrent execution such that the timestamps determine the serializability order. The

https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 174 |

timestamp ordering protocol ensures that any conflicting read and write operations are executed in

timestamp order. Whenever some Transaction T tries to issue a R_item(X) or a W_item(X), the Basic TO

algorithm compares the timestamp of T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is

not violated. This describe the Basic TO protocol in following two cases.

1. Whenever a Transaction T issues a W_item(X) operation, check the following conditions:

• If R_TS(X) > TS(T) or if W_TS(X) > TS(T), then abort and rollback T and reject the

operation. else,

• Execute W_item(X) operation of T and set W_TS(X) to TS(T).

2. Whenever a Transaction T issues a R_item(X) operation, check the following conditions:

• If W_TS(X) > TS(T), then abort and reject T and reject the operation, else

• If W_TS(X) <= TS(T), then execute the R_item(X) operation of T and set R_TS(X) to the

larger of TS(T) and current R_TS(X).

Whenever the Basic TO algorithm detects twp conflicting operation that occur in incorrect order, it rejects

the later of the two operation by aborting the Transaction that issued it. Schedules produced by Basic TO

are guaranteed to be conflict serializable. Already discussed that using Timestamp, can ensure that our

schedule will be deadlock free.

One drawback of Basic TO protocol is that it Cascading Rollback is still possible. Suppose we have a

Transaction T1 and T2 has used a value written by T1. If T1 is aborted and resubmitted to the system then, T

must also be aborted and rolled back. So the problem of Cascading aborts still prevails.

Let’s gist the Advantages and Disadvantages of Basic TO protocol:

• Timestamp Ordering protocol ensures serializablity since the precedence graph will be of the form

as shown in figure 11.1:

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 175 |

Figure 11.1: Precedence Graph for Timestamp Ordering

• Timestamp protocol ensures freedom from deadlock as no transaction ever waits.

• But the schedule may not be cascade free, and may not even be recoverable.

11.5 MULTI VERSION TECHNIQUES

MVCC provides concurrent access to the database without locking the data. This feature improves the

performance of database applications in a multiuser environment. Applications will no longer hang

because a read cannot acquire a lock.

MVCC provides each user connected to the database with a "snapshot" of the data to work with. The data

is consistent with a point in time. Other users of the database see no changes until the transaction is

committed. The snapshot can be taken at the start of a transaction, or at the start of each statement, as

determined by the isolation level setting.

• This release provides full MVCC support, in which readers do not block writers, and writers do

not block readers.

• The user invokes MVCC protocols for a session or table with the SQL statement:

• SET LOCKMODE session | ON table_name WHERE LEVEL = MVCC

• The alterdb command has two new options, -disable_mvcc and -enable_mvcc, which disable and

enable MVCC, respectively. By default, MVCC is enabled for all existing and newly created

databases.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 176 |

• Using MVCC is optional. Your existing applications that do not use MVCC will execute in the

same manner they worked previously. The overhead of MVCC is the cost of maintaining multiple

versions of database pages.

• For the system administrator, MVCC may require additional buffer manager memory because

Consistent Read pages occupy cache space that otherwise might be used by database pages.

• The MVCC feature changes the format of many log records, which means that after running

upgradedb, previous journals and checkpoints will be invalid.

For details about this feature, see the following:

•The chapters "Understanding the Locking System" and "Understanding Multiversion

Concurrency Control" in the Database Administrator Guide

•The SET LOCKMODE and SET SESSION ISOLATION LEVEL statements in the SQL

Reference Guide

•The alterdb command in the Command Reference Guide

11.6 DEADLOCKS

In a database, a deadlock is an unwanted situation in which two or more transactions are waiting indefinitely

for one another to give up locks. Deadlock is said to be one of the most feared complications in DBMS as

it brings the whole system to a Halt.

Example – let us understand the concept of Deadlock with an example:

Suppose, Transaction T1 holds a lock on some rows in the Students table and needs to update some rows

in the Grades table. Simultaneously, Transaction T2 holds locks on those very rows (Which T1 needs to

update) in the Grades table but needs to update the rows in the Student table held by Transaction T1.

Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up lock, and similarly

transaction T2 will wait for transaction T1 to give up lock. As a consequence, All activity comes to a halt

and remains at a standstill forever unless the DBMS detects the deadlock and aborts one of the transactions

as shown in figure 11.2.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 177 |

Figure 11.2: Deadlock in DBMS

11.7 RECOVERY IN DBMS

Basically, whenever a transaction is submitted to a DBMS for execution, the operating system is responsible

for making sure or to be confirmed that all the operation which need to be in performed in the transaction

have completed successfully and their effect is either recorded in the database or the transaction doesn’t

affect the database or any other transactions.

The DBMS must not permit some operation of the transaction T to be applied to the database while other

operations of T is not. This basically may happen if a transaction fails after executing some of its operations

but before executing all of them.

Types of failures –

There are basically following types of failures that may occur and leads to failure of the transaction such as:

1. Transaction failure

2. System failure

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 178 |

3. Media failure and so on.

Let us try to understand the different types of failures that may occur during the transaction.

1. System crash –A hardware, software or network error occurs comes under this category this types

of failures basically occurs during the execution of the transaction. Hardware failures are basically

considered as Hardware failure.

2. System error – Some operation that is performed during the transaction is the reason for this type

of error to occur, such as integer or divide by zero. This type of failures is also known as the

transaction which may also occur because of erroneous parameter values or because of a logical

programming error. In addition to this user may also interrupt the execution during execution which

may lead to failure in the transaction.

3. Local error – This basically happens when we are doing the transaction but certain conditions

may occur that may lead to cancellation of the transaction. This type of error is basically coming

under Local error. The simple example of this is that data for the transaction may not found. When

we want to debit money from an insufficient balance account which leads to the cancellation of our

request or transaction. And this exception should be programmed in the transaction itself so that it

wouldn’t be considered as a failure.

4. Concurrency control enforcement – The concurrency control method may decide to abort the

transaction, to start again because it basically violates serializability or we can say that several

processes are in a deadlock.

5. Disk failure – This type of failure basically occur when some disk loses their data because of a

read or write malfunction or because of a disk read/write head crash. This may happen during a read

/write operation of the transaction.

6. Castropher- –These are also known as physical problems it basically refers to the endless list of

problems that include power failure or air-conditioning failure, fire, theft sabotage overwriting disk

or tapes by mistake and mounting of the wrong tape by the operator.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 179 |

11.8CHECK YOUR PROGRESS

1. Locks placed by command are called _________.

2. Which of the following locks the item from change but not from read?

a) implicit locks

b) explicit lock

c) exclusive locks

d) shared locks

3. The advantage of optimistic locking is that:

a) The lock is obtained only after the transaction has processed.

b) The lock is obtained before the transaction has processed.

c) The lock never needs to be obtained.

d) Transactions that are best suited are those with a lot of activity.

4. Which of the following refers to a cursor type that when the cursor is opened, a primary

key value is saved for each row in the recordset; when the application accesses a row, the

key is used to fetch the current values of the row?

a) Forward only

b) Static

c) Keyset

d) Dynamic

11.9 SUMMARY

Locking mechanisms are a way for databases to produce sequential data output without the sequential

steps. The locks provide a method for securing the data that is being used so no anomalies can occur like

lost data or additional data that can be added because of the loss of a transaction.

1. Two-Phase Locking Protocol:

Locking is an operation which secures: permission to read, OR permission to write a data item. Two phase

locking is a process used to gain ownership of shared resources without creating the possibility of

deadlock.

The 3 activities taking place in the two phase update algorithm are:

https://www.geeksforgeeks.org/two-phase-locking-protocol/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 180 |

1. Lock Acquisition

2. Modification of Data

3. Release Lock

Two phase locking prevents deadlock from occurring in distributed systems by releasing all the resources

it has acquired, if it is not possible to acquire all the resources required without waiting for another process

to finish using a lock. This means that no process is ever in a state where it is holding some shared

resources, and waiting for another process to release a shared resource which it requires. This means that

deadlock cannot occur due to resource contention.

A transaction in the Two Phase Locking Protocol can assume one of the 2 phases:

• (i) Growing Phase:

In this phase a transaction can only acquire locks but cannot release any lock. The point when a transaction

acquires all the locks it needs is called the Lock Point.

• (ii) Shrinking Phase:

In this phase a transaction can only release locks but cannot acquire any.

2. Time Stamp Ordering Protocol:

A timestamp is a tag that can be attached to any transaction or any data item, which denotes a specific

time on which the transaction or the data item had been used in any way. A timestamp can be

implemented in 2 ways. One is to directly assign the current value of the clock to the transaction or data

item. The other is to attach the value of a logical counter that keeps increment as new timestamps are

required.

The timestamp of a data item can be of 2 types:

• (i) W-timestamp(X):

This means the latest time when the data item X has been written into.

• (ii) R-timestamp(X):

This means the latest time when the data item X has been read from. These 2 timestamps are updated each

time a successful read/write operation is performed on the data item X.

https://www.geeksforgeeks.org/timestamp-based-concurrency-control/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 181 |

3. Multiversion Concurrency Control:

Multiversion schemes keep old versions of data item to increase concurrency.

Multiversion 2 phase locking:

Each successful write results in the creation of a new version of the data item written. Timestamps are

used to label the versions. When a read(X) operation is issued, select an appropriate version of X based on

the timestamp of the transaction.

11.10 KEYWORDS

• Two- phase locking- The Two Phase Commit is designed to coordinate the transactions of the

requests to the system. The idea behind the protocol is to produce serialized results from a non-

serialized system.

• View- Any set of tuples; a data report from the RDBMS in response to a query.

• Live lock-A transaction is in a state of livelock if it cannot proceed for an indefinite period while

other transactions in the system continue normally.

11.11SELF-ASSESSMENT TEST

1. What are different types of locking techniques in DBMS?

2. What is a deadlock? How deadlock occur in a database?

3. How to recover a database management system from a deadlock?

4. What is timestamp ordering?

5. What is multiversion2 phase locking?

11.12ANSWERS TO CHECK YOUR PROGRESS

1. B

2. Shared locks

3. A

4. C

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 182 |

11.13REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.geeksforgeeks.org/concurrency-control-in-dbms/

• https://www.geeksforgeeks.org/deadlock-in-dbms/?ref=lbp

• https://www.javatpoint.com/dbms-recoverability-of-schedule

• https://www.slideshare.net/rajvardhan7/multiversion-concurrency-control-techniques

https://www.geeksforgeeks.org/concurrency-control-in-dbms/
https://www.geeksforgeeks.org/deadlock-in-dbms/?ref=lbp
https://www.javatpoint.com/dbms-recoverability-of-schedule
https://www.slideshare.net/rajvardhan7/multiversion-concurrency-control-techniques

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 183 |

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: DBA-105 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 12 VETTER:

DDBMS DESIGN

STRUCTURE

12.0 Learning Objective

12.1 Introduction

12.2 Definition

12.3 Distributed Database

12.4 Data Replication

12.5 Fragmentation Techniques

12.6 Check Your Progress

12.7 Summary

12.8 Keywords

12.9 Self-Assessment Test

12.10 Answers to check your progress

12.11 References / Suggested Readings

12.0 LEARNING OBJECTIVE

• The objective of this chapter is to make the reader understand the distributed database systems,

to know the difference between dbms and ddbms. To know the types of the distributed

database systems.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 184 |

12.1 INTRODUCTION

In today’s organizations, there is a need for a well-maintained database to maintain its

functionality. Earlier, databases used to be centralized in nature. But, with the boost in globalization,

organizations inclined to diversify throughout the globe. These days, instead of opting for a central

database, many organizations choose to distribute data over local servers. This distribution of data over

various servers is generally known as distributed databases. A distributed database system is the collection

of logically interrelated data, distributed across various locations that communicate via a computer

network.

To ensure a successful database management system, it is vital to carefully work out a strategy to

align the data requirements and business agenda of your organization. Hiring the services of a database

development company can be of great help in creating and implementing database solutions. A

professional company can help you in determining the best database management system and test

database programs. Many database development companies these days provide custom database

solutions provider inclined to client’s needs to help efficient management and security of crucial business

data.

Since its introduction, Distributed database systems have eliminated many shortcomings of the

centralized database systems and fit more in the decentralized structures of many organizations. Here are

some of the key benefits of a distributed database system over the centralized database system, have a

look:

• Reliability and Availability: Distributed database systems are more reliable as compared to

a centralized database system. In the case of database failures, the whole system of centralized

databases comes to an end. Whereas, in the case of distributed database systems, if a

component fails, the performance of the system continues may be at a slower rate.

• Modular Development: In the case of centralized database systems, if the system requires to

be extended to new locations or new units, the action needs substantial efforts and interruption

in the existing functioning. But, in a distributed database system, the expansion work simply

requires adding new computers and local data to the new site and finally connecting them to

the distributed system without disturbing the existing functionality.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 185 |

• Quick Response: When data is distributed in an efficient manner, the user requests or queries

can be met from local data itself, thus offering a quick response. In the case of centralized

database systems, all kinds of queries need to pass through the central computer for processing,

which may lead to delay in response.

• Lower Communication Overhead: When data is positioned locally where it is frequently

used, then the communication costs for data management can be minimized. However, in the

case of centralized database systems, the communication costs are quite high.

• Secured Management of Distributed Data: A number of transparencies such as fragmented

transparency, network transparency, and replication transparency are implemented to cover

the actual implementation details of the entire distributed system. Thus, distributed database

systems provide more security of data as compared to centralized database systems.

12.2 DEFINITION

Data Replication-Data replication is the storage of data copies at multiple sites on the network.

Client- Server Architecture- Implementation of a distributed database system must be carefully

managed within a client server architecture. Typically, the server provides the resources for the client to

use. The client receives the request from the user and the request is passed to the server. The server

receives, schedules and executes the requests, selecting only what the client requires. The request is sent

only when the client requests it.

Data Fragmentation-Data fragmentation is a technique used to break up objects. In designing a

distributed database, you must decide which portion of the database is to be stored where.

12.3 DISTRIBTUED DATABASE SYSTEM

A distributed database is basically a database that is not limited to one system, it is spread over different

sites, i.e. on multiple computers or over a network of computers. A distributed database system is located

on various sited that don’t share physical components. This maybe required when a particular database

needs to be accessed by various users globally. It needs to be managed such that for the users it looks like

one single database.

Types:

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 186 |

1. Homogeneous Database:

In a homogeneous database, all different sites store database identically. The operating system, database

management system and the data structures used – all are same at all sites. Hence, they’re easy to manage.

2. Heterogeneous Database:

In a heterogeneous distributed database, different sites can use different schema and software that can

lead to problems in query processing and transactions. Also, a particular site might be completely unaware

of the other sites. Different computers may use a different operating system, different database

application. They may even use different data models for the database. Hence, translations are required

for different sites to communicate.

12.4 DATA REPLICATION

Data replication is the process of storing separate copies of the database at two or more sites. It is a

popular fault tolerance technique of distributed databases.Data replication is the storage of data copies

at multiple sites on the network. Fragment copies can be stored at several site, thus enhancing data

availability and response time. Replicated data is subject to a mutual consistency rule. This rule requires

that all copies of the data fragments must be identical and to ensure data consistency among all of the

replications. Although data replication is beneficial in terms of availability and response times, the

maintenance of the replications can become complex. For example, if data is replicated over multiple

sites, the DDBMS must decide which copy to access. For a query operation, the nearest copy is all that

is required to satisfy a transaction. However, if the operation is an update, then all copies must be selected

and updated to satisfy the mutual consistency rule.

Advantages of Data Replication

• Reliability − In case of failure of any site, the database system continues to work since a copy is

available at another site(s).

• Reduction in Network Load − Since local copies of data are available, query processing can be

done with reduced network usage, particularly during prime hours. Data updating can be done at

non-prime hours.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 187 |

• Quicker Response − Availability of local copies of data ensures quick query processing and

consequently quick response time.

• Simpler Transactions − Transactions require less number of joins of tables located at different

sites and minimal coordination across the network. Thus, they become simpler in nature.

Disadvantages of Data Replication

• Increased Storage Requirements − Maintaining multiple copies of data is associated with

increased storage costs. The storage space required is in multiples of the storage required for a

centralized system.

• Increased Cost and Complexity of Data Updating − Each time a data item is updated, the

update needs to be reflected in all the copies of the data at the different sites. This requires

complex synchronization techniques and protocols.

• Undesirable Application – Database coupling − If complex update mechanisms are not used,

removing data inconsistency requires complex co-ordination at application level. This results in

undesirable application – database coupling.

Some commonly used replication techniques are −

• Snapshot replication

• Near-real-time replication

• Pull replication

12.5 FRAGMENTATION TECHNIQUES

Data fragmentation is a technique used to break up objects. In designing a distributed database, you must

decide which portion of the database is to be stored where. One technique used to break up the database

into logical units called fragments. Fragmentation information is stored in a distributed data catalogue

which the processing computer uses to process a user's request.As a point of discussion, we can look at

data fragmentation in terms of relations or tables. The following matrix describes the different types of

fragmentation that can be used.

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 188 |

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of the table are

called fragments. Fragmentation can be of three types: horizontal, vertical, and hybrid (combination of

horizontal and vertical). Horizontal fragmentation can further be classified into two techniques: primary

horizontal fragmentation and derived horizontal fragmentation.

Fragmentation should be done in a way so that the original table can be reconstructed from the fragments.

This is needed so that the original table can be reconstructed from the fragments whenever required. This

requirement is called “re-constructiveness.”

Advantages of Fragmentation

• Since data is stored close to the site of usage, efficiency of the database system is increased.

• Local query optimization techniques are sufficient for most queries since data is locally available.

• Since irrelevant data is not available at the sites, security and privacy of the database system can

be maintained.

Disadvantages of Fragmentation

• When data from different fragments are required, the access speeds may be very high.

• In case of recursive fragmentations, the job of reconstruction will need expensive techniques.

• Lack of back-up copies of data in different sites may render the database ineffective in case of

failure of a site.

VERTICAL FRAGMENTATION

In vertical fragmentation, the fields or columns of a table are grouped into fragments. In order to maintain

re-constructiveness, each fragment should contain the primary key field(s) of the table. Vertical

fragmentation can be used to enforce privacy of data.

HORIZONTAL FRAGMENTATION

Horizontal fragmentation groups the tuples of a table in accordance to values of one or more fields.

Horizontal fragmentation should also confirm to the rule of re-constructiveness. Each horizontal fragment

must have all columns of the original base table.

HYBRID FRAGMENTATION

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 189 |

In hybrid fragmentation, a combination of horizontal and vertical fragmentation techniques are used. This

is the most flexible fragmentation technique since it generates fragments with minimal extraneous

information. However, reconstruction of the original table is often an expensive task.

12.6CHECK YOUR PROGRESS

1. Global wait-for graph is used for ___________in distributed database.

2. Which of the following is not a promise of distributed database?

a. Network transparency

b. Replication Transparency

c. Fragmentation Transparency

d. None of the above

3. The real use of the two phase commit protocol is ___________

4. A distributed transaction can be __________if queries are issued at one or more nodes.

5. Depending on the solution each node in the distributed database system can act

as_________

12.7 SUMMARY

Whether the database is centralized or distributed, the design principles and concepts are same. However,

the design of a distributed database introduces three new issues:

• How to partition the database into fragments.

• Which fragments to replicate.

• Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues and data allocation deals with the

third issue.

Data Fragmentation:

Data fragmentation allows you to break a single object into two or more segments, or fragments. The

object might be a user’s database, a system database, or a table. Each fragment can be stored at any site

over a computer network. Information about data fragmentation is stored in the distributed data catalog

(DDC), from which it is accessed by the TP to process user requests.Data fragmentation strategies, as

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 190 |

discussed here, are based at the table level and consist of dividing a table into logical fragments. You

will explore three types of data fragmentation strategies: horizontal, vertical, and mixed.

Horizontal fragmentation refers to the division of a relation into subsets (fragments) of tuples (rows).

Each fragment is stored at a different node, and each fragment has unique rows. However, the unique

rows all have the same attributes (columns). In short, each fragment represents the equivalent of a

SELECT statement, with the WHERE clause on a single attribute.

Vertical fragmentation refers to the division of a relation into attribute (column) subsets. Each subset

(fragment) is stored at a different node, and each fragment has unique columns—with the exception of

the key column, which is common to all fragments. This is the equivalent of the PROJECT statement in

SQL.

Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other words, a table

may be divided into several horizontal subsets (rows), each one having a subset of the attributes

(columns).

12.8 KEYWORDS

• MYSQL-Cluster is the distributed database combining linear scalability and high availability. It

provides in-memory real-time access with transactional consistency across partitioned

and distributed datasets. It is designed for mission critical applications.

• DDBMS-A distributed database management system (DDBMS) is the software system that

manages a distributed database such that the distribution aspects are transparent to the users.

• Distributed database- A distributed database (DDB) is an integrated collection of databases that is

physically distributed across sites in a computer network.

12.9SELF-ASSESSMENT TEST

1. What is Distributed Database Management System?

2. What are the major differences between DBMS and DDBMS?

3. What is Fragmentation?

4. What is Data Replication?

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 191 |

5. Discuss some design issues in DDBMS.

12.10ANSWERS TO CHECK YOUR PROGRESS

1. Handling deadlocks

2. D

3. Atomicity i.e. all or nothing commits at all sites

4. Partially read only

12.11REFERENCES / SUGGESTED READINGS

• C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N. Delhi.

• Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB Publication 3rd

edition.

• Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson Education.

• Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

• https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_design_strategies.htm

• https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distributed_sys/ddms_design.htm

• http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-design-

concepts.html

• https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-distributed-

database-design/

• https://www.geeksforgeeks.org/distributed-database-system/

• https://www.geeksforgeeks.org/concurrency-control-in-dbms/

https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_design_strategies.htm
https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distributed_sys/ddms_design.htm
http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-design-concepts.html
http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-design-concepts.html
https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-distributed-database-design/
https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-distributed-database-design/
https://www.geeksforgeeks.org/distributed-database-system/
https://www.geeksforgeeks.org/concurrency-control-in-dbms/

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 192 |

NOTES

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 193 |

NOTES

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 194 |

NOTES

Database Management System DBA-105

 CDOE, GJUS&T, Hisar 195 |

NOTES
